If cosA+cosB=1/3
sinA+sinB=1/4
Prove that-tan(A+B)/2=3/4
Answers
Answered by
1
Answer:
Step-by-step explanation:
CosA + CosB = 1/3
SinA + SinB = 1/4
But,
CosA + CosB = 2Cos(A+B)/2.Cos(A-B)/2 --- (1)
SinA + SinB = 2Sin(A+B)/2.Cos(A-B)/2 --- (2)
Divide (2) by 1
SinA + SinB / CosA + CosB = (1/4) / (1/3)
=> 2Sin(A+B)/2.Cos(A-B)/2 / 2Cos(A+B)/2.Cos(A-B)/2 = 1/4 * 3/1
=> Sin(A+B)/2 / Cos(A+B)/2 = 3/4
=> Tan(A+B)/2 = 3/4
Hence proved.
Similar questions