If cosA>0°, tanA+SinA=m, tanA-SinA=n then show that m²-n²=4√mn
Answers
Answered by
0
HOPE YOU UNDERSTAND
L.h.s
M²-n²
(m+n)(m-n)
(tanA+sinA+tanA-sinA)(tanA+sinA-tanA+sinA)
(2tanA)(2sinA)
(2sinA/cosA)(2sinA)
4sin²A/cosA
r.h.s
4√mn
4√(tanA+SinA)(tanA-SinA)
4√tan²A-tanA*sinA+sinA*tanA-sin²A
4√tan²A-sin²A
4√sin²A/cos²A-sin²A
4√sin²A-sin²A*cos²A/cos²A
4√sin²A(1-cos²A)/cos²A (SINCE 1-COS²A=SIN²A)
4√(sin²A)²/cos²A
4sin²A/cosA
THEREFORE L.H.S=R.H.S PROVED
IF YOU WANT TRIGNOMETRY ANSWER THEN ASK ME IN MESSANGER
Answered by
5
Answer:
your answer attached in the photo
you can replace θ by A
Attachments:
Similar questions