Math, asked by mubashirshahwez, 2 months ago

If cosA = ncosB and sinA = msinB then show that (m^2-n^2) sinB = 1-n^2

Answers

Answered by kamalhajare543
4

Answer:

Answer is give in attachment

Thanks

Attachments:
Answered by XxMissInnocentxX
12

  \huge \tt { \underline{ \underline{ᗩnswer}}}

  • LHS=(m²-n²)Sin²A
  • =[(Sin²Α/Sin²B)-(Cos²Α/Cos²Β)](Sin²B)
  • = [(Sin²Α Cos²Β-Cos²Α Sin²Β)/Sin²Β Cos²Β] *Sin²B
  • =( Sin²Α Cos²Β/Cos²B)-(Cos²Α Sin²B/Cos²Β)
  • = Sin²Α- Cos²Α(1-Cos²Β)/Cos²Β
  • = Sin²Α- (Cos²Α/Cos²Β)+ Cos²Α Cos²Β/Cos²B
  • = Sin²Α+Cos²Α- (Cos²Α/Cos²B)
  • = 1- n²

Similar questions