If cosA = ncosB and sinA = msinB then show that (m^2-n^2) sinB = 1-n^2
Answers
Answered by
4
Answer:
Answer is give in attachment
Thanks
Attachments:
Answered by
12
- LHS=(m²-n²)Sin²A
- =[(Sin²Α/Sin²B)-(Cos²Α/Cos²Β)](Sin²B)
- = [(Sin²Α Cos²Β-Cos²Α Sin²Β)/Sin²Β Cos²Β] *Sin²B
- =( Sin²Α Cos²Β/Cos²B)-(Cos²Α Sin²B/Cos²Β)
- = Sin²Α- Cos²Α(1-Cos²Β)/Cos²Β
- = Sin²Α- (Cos²Α/Cos²Β)+ Cos²Α Cos²Β/Cos²B
- = Sin²Α+Cos²Α- (Cos²Α/Cos²B)
- = 1- n²
Similar questions
English,
30 days ago
Math,
30 days ago
Sociology,
30 days ago
Computer Science,
2 months ago
English,
2 months ago
Computer Science,
9 months ago