Math, asked by anup1343, 1 year ago

if cosA+sinA=2^(1/2) then find cosA -sinA.

Answers

Answered by ihrishi
0

Step-by-step explanation:

cos \: A  +  sin \: A =  {2}^{ \frac{1}{2} }  \\squiring \: both \: sides :   \:  \\ (cos \: A  + sin \: A)^{2}  = ({2}^{ \frac{1}{2} })^{2}  \\ cos^{2} \: A  +  sin^{2} \: A + 2cos \: A  sin \: A  = 2 \\ 1 + 2cos \: A  sin \: A  = 2  \\ 2sin \: A \: cos \: A = 2 - 1 \\ sin \: 2A = 1 \\ sin \: 2A = sin \: 90 \degree \\ 2A = 90 \degree  \\ A =  \frac{90 \degree}{2}  \\ A = 45 \degree \\ cos \: A   -  sin \: A \\   =cos \:   45 \degree -  sin \: 45 \degree \:  \\  =   \frac{1}{ \sqrt{2} }  -  \frac{1}{ \sqrt{2} }  \\  = 0 \\  \therefore \: cos \: A   -  sin \: A  = 0

Similar questions