If cosA + sinA = √2 sin(90-A), then find the value of 1/(√2 + 1) cotA
Solve this
Answers
Answered by
10
Hi ,
Given
cosA + sinA = √2 sin(90-A)
cosA + sinA = √2 cosA ----( 1 )
[ since sin(90-A ) = cosA ]
divide each term with sinA
( cosA/sinA) + ( sinA/sinA) = √2( cosA/sinA)
cotA + 1 = √2 cotA
1 = √2 cotA - cotA
1 = (√2 - 1 )cotA
1 = { [ (√2 - 1 )(√2 + 1 ) ]/(√2 + 1 ) } cotA
1 = { [ (√2 )² - 1² ] /(√2 + 1 ) } cotA
1 = { (2 - 1 )/(√2 + 1 ) } cotA
1 = [ 1 / (√2 + 1 ) ] cotA
therefore ,
1 / ( √2 + 1 ) cotA = 1
I hope this helps you.
:)
Given
cosA + sinA = √2 sin(90-A)
cosA + sinA = √2 cosA ----( 1 )
[ since sin(90-A ) = cosA ]
divide each term with sinA
( cosA/sinA) + ( sinA/sinA) = √2( cosA/sinA)
cotA + 1 = √2 cotA
1 = √2 cotA - cotA
1 = (√2 - 1 )cotA
1 = { [ (√2 - 1 )(√2 + 1 ) ]/(√2 + 1 ) } cotA
1 = { [ (√2 )² - 1² ] /(√2 + 1 ) } cotA
1 = { (2 - 1 )/(√2 + 1 ) } cotA
1 = [ 1 / (√2 + 1 ) ] cotA
therefore ,
1 / ( √2 + 1 ) cotA = 1
I hope this helps you.
:)
mysticd:
:)
Answered by
4
cos A + sin A= √2 sin(90°-A)
» sin A + cos A = √2 cos A {sin(90-∅) = cos ∅}
» sin A = √2 cos A - cos A
Now,divide all terms by sin A
» sin A/sin A = √2cos A/sin A - cos A/sin A
» 1 = √2cot A - cot A {cos A/sin A = cot A}
» 1 = (√2-1) cot A
» Multiply and divide √2+1 on RHS,
» 1 = {(√2-1)(√2+1)/(√2+1)} × cot A
» 1 = (√2²-1²)/(√2+1) × cot A
» 1 = {1/(√2+1)} × cot A
Therefore! The value of 1/(√2+1) × cot A = 1
Hope it helps…
» sin A + cos A = √2 cos A {sin(90-∅) = cos ∅}
» sin A = √2 cos A - cos A
Now,divide all terms by sin A
» sin A/sin A = √2cos A/sin A - cos A/sin A
» 1 = √2cot A - cot A {cos A/sin A = cot A}
» 1 = (√2-1) cot A
» Multiply and divide √2+1 on RHS,
» 1 = {(√2-1)(√2+1)/(√2+1)} × cot A
» 1 = (√2²-1²)/(√2+1) × cot A
» 1 = {1/(√2+1)} × cot A
Therefore! The value of 1/(√2+1) × cot A = 1
Hope it helps…
Similar questions