Math, asked by nandini21sharma, 7 months ago

if cosa + sina =√2cosa. show that cosa - sina=√2sina.​

Answers

Answered by akuldas19
1

Step-by-step explanation:

 \sin( \alpha )  +  \cos( \alpha )  =  \sqrt{2}  \cos( \alpha )  \\ 1 + 2 \sin( \alpha )  \cos( \alpha )  = 2 { \cos( \alpha ) }^{2}  \\  = > 1 -  { \cos( \alpha ) }^{2}  =  { \cos( \alpha ) }^{2}  - 2 \sin( \alpha )  \cos( \alpha )  \\  =  >  { \sin( \alpha ) }^{2}  +   { \sin( \alpha ) }^{2}  =  { \cos( \alpha ) }^{2}  +  { \sin( \alpha ) }^{2}  - 2 \sin( \alpha )  \cos( \alpha )  \\  =  > 2 { \sin( \alpha ) }^{2}  =  {( \sin( \alpha ) -  \cos( \alpha )  )}^{2}  \\  =  >  \sqrt{2}  \sin( \alpha )  =  \sin( \alpha )  -  \cos( \alpha )

I hope it will help you to understand the solution ☺️

please mark it as the brainliest answer ☃️❄️

Similar questions