Math, asked by tayebasuha, 2 months ago

if cosA+sinA=√2cosA , then prove that cosA-sinA=√2sinA​

Answers

Answered by TheBrainlistUser
4

\large\bf\underline\red{Question \:  :- }

★ If cosA+sinA=√2cosA , then prove that cosA-sinA=√2sinA

\large\bf\underline\red{Answer \:  :- }

Given,

\sf{cosA + sinA =  \sqrt{2} cosA }

Replacing

 \sf{sinA =  \sqrt{2} cosA - cosA}

 \sf{sinA = ( \sqrt{2}  - 1 ) \:  cosA}

 \sf{   \frac{\sin A}{cosA} = ( \sqrt{2} -1)} \\

 \sf{tanA =  \sqrt{2} - 1 }

 \sf{  \frac{1}{tanA}   =  \frac{1}{ \sqrt{2} - 1 } } \\

Rationalize denominator

 \sf{cotA = \frac{1}{ \sqrt{2}  - 1} \times  \frac{ \sqrt{2}  + 1}{ \sqrt{2} + 1 }   } \\

 \sf{cotA = \sqrt{2} + 1  }

We know that

\sf{cotA =  \frac{cosA }{ sinA}  }  \\

Putting

 \sf{ \frac{cosA }{ sinA}  = \sqrt{2}  + 1 } \\

 \sf{cosA = sinA ( \sqrt{2} + 1) }

 \sf{cosA = \sqrt{2}  sinA + sinA }

\sf\pink{cosA - sinA = \sqrt{2}  sinA}

Hence Proved

_________________________ ____________

Learn more :

Cos A +Sin A =√2SinA show that SinA-CosA =√2 CosA...

https://brainly.in/question/8080588

Similar questions