Math, asked by tauhid184, 28 days ago

if cosA-sinA=√2sinA.
show that, cosecA=2√2cosA​

Answers

Answered by mathdude500
5

Given :-

\rm :\longmapsto\:cosA - sinA =  \sqrt{2} sinA

To Show :-

\rm :\longmapsto\:cosecA = 2 \sqrt{2}cosA

Formula Used :-

\boxed{ \sf \:  {cosec}^{2}x -  {cot}^{2}x = 1}

\boxed{ \sf \: cotx = \dfrac{cosx}{sinx}}

\boxed{ \sf \: cosecx = \dfrac{1}{sinx}}

Solution :-

Given that,

\rm :\longmapsto\:cosA - sinA =  \sqrt{2} sinA

\rm :\longmapsto\:cosA =  \sqrt{2} sinA + sinA

\rm :\longmapsto\:cosA = ( \sqrt{2} +1) sinA

\rm :\longmapsto\:\dfrac{cosA}{sinA} =  \sqrt{2} + 1

\rm :\longmapsto\:cotA = \sqrt{2} +1 -  - (1)

We know,

\rm :\longmapsto\: {cosec}^{2}A = 1 +  {cot}^{2}A

\rm :\longmapsto\: {cosec}^{2}A = 1 +   {( \sqrt{2}  + 1)}^{2}

\rm :\longmapsto\: {cosec}^{2}A = 1 +   2 + 1 + 2 \sqrt{2}

\rm :\longmapsto\: {cosec}^{2}A = 4 + 2 \sqrt{2}

\rm :\longmapsto\:cosecA =  \sqrt{4 + 2 \sqrt{2} }

\rm :\longmapsto\:cosecA =  \sqrt{2}  \sqrt{2 + \sqrt{2} }  -  - (2)

Now,

From equation (1), we have

\rm :\longmapsto\:cotA = \sqrt{2} +1

\rm :\longmapsto\: \dfrac{cosA}{sinA} = \sqrt{2} +1

\rm :\longmapsto\:cosA \times cosecA =  \sqrt{2}  + 1

can be rewritten as,

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times  {cosec}^{2}A =  \sqrt{2} + 1

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times  2(2 +  \sqrt{2})  =  \sqrt{2} + 1

 \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because\:cosecA =  \sqrt{2}  \sqrt{2 + \sqrt{2} } }

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times  2( \sqrt{2} \times  \sqrt{2}   +  \sqrt{2})  =  \sqrt{2} + 1

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times  2 \sqrt{2} \:  \:   \cancel{( \sqrt{2}+1)}  =   \cancel{\sqrt{2} + 1}

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times 2 \sqrt{2}  = 1

\bf\implies \:cosecA = 2 \sqrt{2}cosA

{{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by muskanshi536
2

Step-by-step explanation:

Given :-

\rm :\longmapsto\:cosA - sinA =  \sqrt{2} sinA

To Show :-

\rm :\longmapsto\:cosecA = 2 \sqrt{2}cosA

Formula Used :-

\boxed{ \sf \:  {cosec}^{2}x -  {cot}^{2}x = 1}

\boxed{ \sf \: cotx = \dfrac{cosx}{sinx}}

\boxed{ \sf \: cosecx = \dfrac{1}{sinx}}

Solution :-

Given that,

\rm :\longmapsto\:cosA - sinA =  \sqrt{2} sinA

\rm :\longmapsto\:cosA =  \sqrt{2} sinA + sinA

\rm :\longmapsto\:cosA = ( \sqrt{2} +1) sinA

\rm :\longmapsto\:\dfrac{cosA}{sinA} =  \sqrt{2} + 1

\rm :\longmapsto\:cotA = \sqrt{2} +1 -  - (1)

We know,

\rm :\longmapsto\: {cosec}^{2}A = 1 +  {cot}^{2}A

\rm :\longmapsto\: {cosec}^{2}A = 1 +   {( \sqrt{2}  + 1)}^{2}

\rm :\longmapsto\: {cosec}^{2}A = 1 +   2 + 1 + 2 \sqrt{2}

\rm :\longmapsto\: {cosec}^{2}A = 4 + 2 \sqrt{2}

\rm :\longmapsto\:cosecA =  \sqrt{4 + 2 \sqrt{2} }

\rm :\longmapsto\:cosecA =  \sqrt{2}  \sqrt{2 + \sqrt{2} }  -  - (2)

Now,

From equation (1), we have

\rm :\longmapsto\:cotA = \sqrt{2} +1

\rm :\longmapsto\: \dfrac{cosA}{sinA} = \sqrt{2} +1

\rm :\longmapsto\:cosA \times cosecA =  \sqrt{2}  + 1

can be rewritten as,

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times  {cosec}^{2}A =  \sqrt{2} + 1

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times  2(2 +  \sqrt{2})  =  \sqrt{2} + 1

 \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because\:cosecA =  \sqrt{2}  \sqrt{2 + \sqrt{2} } }

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times  2( \sqrt{2} \times  \sqrt{2}   +  \sqrt{2})  =  \sqrt{2} + 1

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times  2 \sqrt{2} \:  \:   \cancel{( \sqrt{2}+1)}  =   \cancel{\sqrt{2} + 1}

\rm :\longmapsto\:\dfrac{cosA}{cosecA}  \times 2 \sqrt{2}  = 1

\bf\implies \:cosecA = 2 \sqrt{2}cosA

{{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions