Math, asked by sahsuresh804, 1 year ago

If cosA=tanB, cosB=tanC and cosC =tanA, prove that:
SinA=sinB=sinC

Answers

Answered by YBHunter
0
tanA+tanB+tanC=tanA.tanB.tanC,=cosA.cosB.cosC
this condition only satisfy only when sinA= sinB=sinC
Answered by chintalasujat
0

Answer:

Step-by-step explanation:

tanθ+sinθ=m and tanθ-sinθ=n

∴, m²-n²

=(m+n)(m-n)

=(tanθ+sinθ+tanθ-sinθ)(tanθ+sinθ-tanθ+sinθ)

=(2tanθ)(2sinθ)

=4tanθsinθ

4√mn

=4√(tanθ+sinθ)(tanθ-sinθ)

=4√(tan²θ-sin²θ)

=4√{(sin²θ/cos²θ)-sin²θ}

=4√sin²θ{(1/cos²θ)-1}

=4sinθ√{(1-cos²θ)/cos²θ}

=4sinθ√(sin²θ/cos²θ)

=4sinθ√tan²θ

=4sinθtanθ

∴, LHS=RHS (Proved)

Similar questions