Math, asked by Parmarpriti, 5 months ago

If cosec 0=13\5, find tan 0,and cos 0​

Answers

Answered by ajay8949
1

 \:  \:  \:   \sf{  \cosec \: a =  \frac{13}{5}  } \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \frac{h}{p}  =  \frac{13}{5} } \\

 \sf{let \: hypotenuse \: be \: 13k \: and \: perpendicular  \: be \: 5k}

 \:  \:  \sf{by \: pythagoras \: theorm}

 \:  \:  \:  \:  \:  \:  \sf{h {}^{2}  =  {p}^{2}  +  {b}^{2} }

 \:  \:  \sf{(13k) {}^{2}  =  {(5k)}^{2}  +  {b}^{2} }

  \:  \:  \: \sf{169 {k}^{2}  = 25 {k}^{2}  +  {b}^{2} }

  \:  \:  \:  \: \sf {{b}^{2}  =1 69 {k}^{2}  - 25 {k}^{2} }

  \:  \:  \:  \:  \:  \:  \: \sf{ {b}^{2}  = 144k {}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf{b = 12k}}

 \boxed{ \sf \pink{ \tan \: a =  \frac{p}{b}  =  \frac{5k}{12k}  =   {\frac{5}{12} }}} \\

 \boxed{ \sf \red{ \cos \: a =  \frac{b}{h}  =  \frac{12k}{13k}  =  \frac{12}{13}} }

 \sf\orange{please\:mark\:as\:brainliest............}

Answered by lopamudrasen
0

Step-by-step explanation:

\begin{gathered} \: \: \: \sf{ \cosec \: a = \frac{13}{5} } \\ \end{gathered}

coseca=

5

13

\begin{gathered} \: \: \: \: \: \: \: \: \: \: \sf{ \frac{h}{p} = \frac{13}{5} } \\ \end{gathered}

p

h

=

5

13

\sf{let \: hypotenuse \: be \: 13k \: and \: perpendicular \: be \: 5k}lethypotenusebe13kandperpendicularbe5k

\: \: \sf{by \: pythagoras \: theorm}bypythagorastheorm

\: \: \: \: \: \: \sf{h {}^{2} = {p}^{2} + {b}^{2} }h

2

=p

2

+b

2

\: \: \sf{(13k) {}^{2} = {(5k)}^{2} + {b}^{2} }(13k)

2

=(5k)

2

+b

2

\: \: \: \sf{169 {k}^{2} = 25 {k}^{2} + {b}^{2} }169k

2

=25k

2

+b

2

\: \: \: \: \sf {{b}^{2} =1 69 {k}^{2} - 25 {k}^{2} }b

2

=169k

2

−25k

2

\: \: \: \: \: \: \: \sf{ {b}^{2} = 144k {}^{2} }b

2

=144k

2

\: \: \: \: \: \: \: \boxed{ \sf{b = 12k}}

b=12k

\begin{gathered} \boxed{ \sf \pink{ \tan \: a = \frac{p}{b} = \frac{5k}{12k} = {\frac{5}{12} }}} \\ \end{gathered}

tana=

b

p

=

12k

5k

=

12

5

\boxed{ \sf \red{ \cos \: a = \frac{b}{h} = \frac{12k}{13k} = \frac{12}{13}} }

cosa=

h

b

=

13k

12k

=

13

12

}pleasemarkasbrainliest............

Similar questions