If cosec 0=13\5, find tan 0,and cos 0
Answers
Step-by-step explanation:
\begin{gathered} \: \: \: \sf{ \cosec \: a = \frac{13}{5} } \\ \end{gathered}
coseca=
5
13
\begin{gathered} \: \: \: \: \: \: \: \: \: \: \sf{ \frac{h}{p} = \frac{13}{5} } \\ \end{gathered}
p
h
=
5
13
\sf{let \: hypotenuse \: be \: 13k \: and \: perpendicular \: be \: 5k}lethypotenusebe13kandperpendicularbe5k
\: \: \sf{by \: pythagoras \: theorm}bypythagorastheorm
\: \: \: \: \: \: \sf{h {}^{2} = {p}^{2} + {b}^{2} }h
2
=p
2
+b
2
\: \: \sf{(13k) {}^{2} = {(5k)}^{2} + {b}^{2} }(13k)
2
=(5k)
2
+b
2
\: \: \: \sf{169 {k}^{2} = 25 {k}^{2} + {b}^{2} }169k
2
=25k
2
+b
2
\: \: \: \: \sf {{b}^{2} =1 69 {k}^{2} - 25 {k}^{2} }b
2
=169k
2
−25k
2
\: \: \: \: \: \: \: \sf{ {b}^{2} = 144k {}^{2} }b
2
=144k
2
\: \: \: \: \: \: \: \boxed{ \sf{b = 12k}}
b=12k
\begin{gathered} \boxed{ \sf \pink{ \tan \: a = \frac{p}{b} = \frac{5k}{12k} = {\frac{5}{12} }}} \\ \end{gathered}
tana=
b
p
=
12k
5k
=
12
5
\boxed{ \sf \red{ \cos \: a = \frac{b}{h} = \frac{12k}{13k} = \frac{12}{13}} }
cosa=
h
b
=
13k
12k
=
13
12
}pleasemarkasbrainliest............