Math, asked by hyma5, 1 day ago

If cosec 0 + cot 0 = k then find the value of cos in terms of k. plz answer this question with step by step

Answers

Answered by ashishks1912
1

Given :

cosecθ + cotθ = k

To find :

The value of cos in terms of k.

Step-by-step explanation:

  • We know that,

       cosecx=\frac{1}{sinx} , cotx=\frac{cosx}{sinx}

  • By substituting this in the given equation,

      \frac{1}{sinθ}+\frac{cosθ}{sinθ} =k

  • By taking the LCM,

       \frac{1+cosθ}{sinθ}=k

  • By cross multiplying,

       1+cosθ = ksinθ

  • By squaring on both sides,

       (1+cos θ)^{2} = k^{2} sin^{2}θ

  • We know that,

       sin^{2}θ = 1-cos^{2}θ

  • cos^{2}θ can be written as

      (1+cosθ)(1-cosθ)

  • By substituting these values in the above equation,

      (1+cosθ)^{2} = k^{2}(1+cosθ)(1-cosθ)

  • By cancelling out the common terms,

      (1+cosθ) = k^{2}(1-cosθ)

  • Take k^{2} inside,

       (1+cosθ)=k^{2} -k^{2} cosθ

  • By taking cos^{2}θ to the other side,

       1+cosθ+k^{2} cosθ=k^{2}

  • Take 1 to the other side,

       cosθ+k^{2} cosθ=k^{2} -1

  • Take cosθ as common,

       cosθ (1+k^{2}) = k^{2} -1

  • Keep cosθ on the same side,

       cosθ=\frac{k^{2}-1 }{k^{2}+1 }

Final answer :

The value of cosθ is \frac{k^{2}-1 }{k^{2}+1 } .

Similar questions