Math, asked by krypton673, 11 months ago

If cosec 0 + cot 0 = p, then prove that cos 0 = P2-1/
p²+1​

Answers

Answered by Anonymous
8

Given-

cosec Ф + cot Ф = p

To prove-

cos Ф = p²-1/p²+1

Proof-

cosecФ + cotФ = p

⇒1/sinФ + cos Ф/sinФ = p

⇒(1+cosФ)/sinФ = p

⇒1+cosФ = psinФ

Squaring both sides we get,

⇒(1+cosФ)² = p²sin²Ф

⇒(1+cosФ)² = p²(1-cos²Ф)                             ∴(sin²Ф+cos²Ф=1)

⇒(1+cosФ)² = p²(1+cosФ)(1-cosФ)                ∴[a²-b²=(a+b)(a-b)]

⇒1+cosФ = p²(1-cosФ)

Last step⇒ cosФ = (p²-1)/p²+1)

Hope it helps , cheers !!

Answered by BrainlyZendhya
1

  • \sf{cos\:θ\:=\:{\dfrac{P^{2}\:-\:1}{P^{2}\:+\:1}}}

Step-by-step explanation:

Given,

  • \sf{cosec\:θ\:+\:cot\:θ\:=\:P} -------- (1)

\sf{cosec^{2}\:θ\:-\:cot^{2}\:θ\:=\:1} (Identity)

\sf{cosec\:θ\:-\:cot\:θ\:=\:{\dfrac{1}{cosec\:θ\:+\:cot\:θ}}}

\sf{cosec\:θ\:-\:cot\:θ\:=\:{\dfrac{1}{P}}} --------- (2)

Adding (1) & (2),

\sf{2\:cosec\:θ\:=\:P\:+{\dfrac{1}{P}}}

\sf{2\:cosec\:θ\:=\:{\dfrac{P^{2}\:+\:1}{P}}} ---------- (3)

Subtracting (2) from (1),

\sf{cosec\:θ\:+\:cot\:θ\:=\:P} \sf{-}\sf{cosec\:θ\:-\:cot\:θ\:=\:{\dfrac{1}{P}}}

\sf{2\:cot\:θ\:=\:P\:-\:{\dfrac{1}{P}}}

\sf{2\:cot\:θ\:=} \sf{ \dfrac{P^2\:-\:1}{P}} ---------- (4)

Dividing (4) & (3),

\sf\dfrac{2\:cot\:θ}{2\:cosec\:θ}\:=\:{\dfrac{P^{2}\:-\:1}{P}\:×\:{\dfrac{P}{P^{2}\:+\:1}}}

\sf{cos\:θ\:=\:{\dfrac{P^{2}\:-\:1}{P^{2}\:+\:1}}}

  • Hence Proved
Similar questions