If cosec 0 + cot 0 = p, then prove that cos 0 = P2-1/
p²+1
Answers
Answered by
8
Given-
cosec Ф + cot Ф = p
To prove-
cos Ф = p²-1/p²+1
Proof-
cosecФ + cotФ = p
⇒1/sinФ + cos Ф/sinФ = p
⇒(1+cosФ)/sinФ = p
⇒1+cosФ = psinФ
Squaring both sides we get,
⇒(1+cosФ)² = p²sin²Ф
⇒(1+cosФ)² = p²(1-cos²Ф) ∴(sin²Ф+cos²Ф=1)
⇒(1+cosФ)² = p²(1+cosФ)(1-cosФ) ∴[a²-b²=(a+b)(a-b)]
⇒1+cosФ = p²(1-cosФ)
Last step⇒ cosФ = (p²-1)/p²+1)
Hope it helps , cheers !!
Answered by
1
Step-by-step explanation:
Given,
- -------- (1)
⟼ (Identity)
⟼
⟼ --------- (2)
Adding (1) & (2),
⟼
⟼ ---------- (3)
Subtracting (2) from (1),
⟼
⟼
⟼ ---------- (4)
Dividing (4) & (3),
⟼
⟼
- Hence Proved
Similar questions