Math, asked by sidd24472, 9 months ago

If cosec 0 + cot 0 = x, find the value of cosec 0 - cot​

Answers

Answered by tushar0007
19

Hope it helps u...........

Attachments:
Answered by jitumahi435
4

The value of \csc \theta - \cot \theta = \dfrac{1}{x}

Step-by-step explanation:

We have,

\csc \theta + \cot \theta = x                     ............ (1)

To find, the value of \csc \theta - \cot \theta = ?    

We know that,

The trigonometric identity,

\csc^2 A - \cot^2 A = 1      

Using the algebraic identity,

a^{2} -b^{2} = (a + b)(a - b)

⇒ (\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = 1

Using equation (1), we get

⇒ (x)(\csc \theta - \cot \theta) = 1

\csc \theta - \cot \theta = \dfrac{1}{x}

∴ The value of \csc \theta - \cot \theta = \dfrac{1}{x}

Thus, the value of \csc \theta - \cot \theta is equal to \dfrac{1}{x}.

Similar questions