Math, asked by somanathjadhav694, 3 months ago

if cosec θ =13/12, find the value of 2sin θ-3cos θ/4sin θ-9cos θ

Answers

Answered by GlamorousAngel
78

Aηѕωεɾ :-

Given :

  •  \large\rm{Cosec  \: θ = \frac{13}{12}}

To Find :-

\large \rm{ \dfrac{2 \: sin \: { \theta} \:  -  \: 3 \cos\: { \theta} }{4 \: sin \: { \theta} \:  -  \: 9 \: cos \: { \theta}} }

Solution :-

 \bigstar \:  \:  \rm{ \cosec \:  =  \:  \dfrac{13}{12} }

 { \bigstar} \:  \: \rm{sin \:  =  \dfrac{12}{13}}

{ \bold{we \: knw \: that  \::  \:}} \\ { \rm{ {sin \: { \theta}}^{2}  +  {cos \: { \theta}}^{2} }} = 1 \\ { \rm{{cos \: { \theta}}^{2}} =  {1}^{2}  -  {sin \: { \theta}}^{2} } \\ { \rm{{cos \: { \theta}}^{2} = 1 -  { (\dfrac{12}{13} )}^{2} }} \\ { \rm{{cos \: { \theta}}^{2} = 1 -  \dfrac{144}{169} }} \\ { \rm{{cos \: { \theta}}^{2} = \:  \frac{169 - 144}{169} }} \\ { \rm{{cos \: { \theta}}^{2} =  \dfrac{25}{169} }} \\ { \rm{{cos \: { \theta}} =  \sqrt{ \dfrac{25}{169} } }} \\{ \bigstar}  \:  \: { \rm{{cos \: { \theta}} =  \dfrac{5}{13} }}

 \rm{Now,  \: Substitute  \: </p><p>cosec \:  =  \dfrac{13}{12}  \: ,</p><p>sin =  \dfrac{12}{13}  \: and \: </p><p>cos =  \dfrac{5}{13} </p><p>\: into  \: a  \: Given  \: Question -}

 \implies \large\rm{ \dfrac{2 \: ( {  \dfrac{12}{13} }) \:  -  \: 3 ( \dfrac{5}{13} ) }{4  \: ( \dfrac{12}{13} )\:  -  \: 9 \:( \dfrac{5}{13} )}}

 \implies\large \rm{ \dfrac{\: ( {  \frac{24}{13} }) \:  -  \:  ( \dfrac{15}{13} ) }{ \: ( \dfrac{48}{13} )\:  -  \: \:( \dfrac{45}{13} )}}

 \implies \large\rm{ \dfrac{\: {  \dfrac{24 - 15}{13} }}{ \: \dfrac{48 - 45}{13} }}

 \implies\large \rm{ \dfrac{\: {  \dfrac{9}{13} }}{ \: \dfrac{3}{13} }}

 \implies\large{ \rm{ \dfrac{9}{13}  \times \dfrac{13}{3}}}

 \implies\large{ \rm{ \dfrac{9}{3} }}

 \implies\large{ \rm{  \blue{3}}}

\large{ \underline{ \rm{ \therefore} \:{the \: answer \: is \: 3}}} \: { \heartsuit}

Similar questions