Math, asked by sohiltheboy, 1 month ago

If cosec^2θ = 25 16 then find the value of sinθ.

Answers

Answered by jaswasri2006
3

 \large \tt cosec \: 2 \theta =  \frac{25}{16}  =  \frac{25}{16}  \\  \\  \large \tt cosec \theta \:  =  \frac{1}{ \: cos \theta \: }  \: =  > cos \theta =  \frac{1}{cosec \theta} \\  \\  \\  \large \tt cos \theta \:  =  \frac{16}{25}  =  \frac{base \:  \: of \:  \triangle}{ \:  \: hypotonuse \:  \: of \:  \triangle \:  \: }  \\  \\  \\ \large \tt sin \theta =  \frac{height \:  \: of \:  \triangle}{hypotonuse}  \\  \\  \\  \\  \large \tt by \:  \: pythagorous \:  \: theorem \:  \:  \\  \\  \\ \large \tt  {(height(h))}^{2}  =  {(hypo)}^{2}  -  {(base)}^{2}  \\  \\  \\  \large \tt  {(h)}^{2}  =  {(25)}^{2}  -  {(16)}^{2}  = 625 - 256 = 369 \\  \\  \\  \large \tt h =  \sqrt{369}  = 19

 \\  \\  \\

 \huge  \color{darkcyan}\tt sin \theta =  \frac{19}{25}

Similar questions