Math, asked by Raazi586, 10 months ago

If cosec θ= 4/3 , the that n find secθ and tan θ .

Answers

Answered by Tanujrao36
129

Given :-

\sf\bullet {Cosec  Ѳ \:=\: \frac{4}{3}}

To find :-

\sf\bullet {sec  Ѳ }

\sf\bullet {tan  Ѳ }

Solution :-

\tt{\orange{Cosec Ѳ\:=\: \frac{Hypotenuse}{Perpendicular}}}

\tt{So,}

\tt{Perpendicular\:=\:3}

\tt{Hypotenuse\:=\:4}

\tt{Base\:=\: \sqrt{ {4}^{2} - {3}^{2}}}

\tt{Base\:=\: \sqrt{16-9}}

\tt{Base\:=\: \sqrt{7}}

\sf {As\:we\:know\:that }

\tt{\orange{Sec Ѳ\:=\: \frac{Hypotenuse}{Base}}}

\tt{ \boxed{Sec Ѳ\:=\: \frac{4}{ \sqrt{7}}}}

and,

\tt{\orange{tan Ѳ\:=\: \frac{perpendicular}{Base}}}

\tt{ \boxed{tan Ѳ\:=\: \frac{3}{ \sqrt{7}}}}

______________________________________

Answered by Anonymous
44

{ \mathrm{ \boxed{ \red{Given}}}}

\tt\bullet {Cosec Ѳ \:=\: \frac{4}{3}}

{ \mathrm{ \boxed{ \red{To\: Find}}}}

\tt\bullet {sec Ѳ }

\tt\bullet {tan Ѳ }

\huge{ \mathrm{ \underline{ \red{Solution}}}}

\sf{\orange{Cosec Ѳ\:=\: \frac{Hypotenuse}{Perpendicular}}}

HENCE

\sf{Perpendicular\:=\:3}

\sf{Hypotenuse\:=\:4}

\sf{Base\:=\: \sqrt{ {4}^{2} - {3}^{2}}}

\sf{Base\:=\: \sqrt{16-9}}

\sf{Base\:=\: \sqrt{7}}

\mathcal{As\:we\:know\:that }

\sf{\purple{Sec Ѳ\:=\: \frac{Hypotenuse}{Base}}}

\sf{ \boxed{ \boxed{Sec Ѳ\:=\: \frac{4}{ \sqrt{7}}}}}

\sf{\purple{tan Ѳ\:=\: \frac{perpendicular}{Base}}}

\sf{ \boxed{ \boxed{tan Ѳ\:=\: \frac{3}{ \sqrt{7}}}}}

Similar questions