If cosec ^6 - cot ^6=a cot^4 + bcot^2+c then a+b+c=
1) 0
2) 7
3) 6
4)1
Answers
Answer: OPTION 2) 7
Step-by-step explanation: HERE IS YOUR EXPLANATION AS IT IS FOR 50 POINTS! :-
We know that, csc2θ=cot2θ+1.......(1).
(csc2θ)3=(cot2θ+1)3.
Since, (x+y)3=x3+y3+3xy(x+y), we have,
csc6θ=(cot2θ)3+13+3(cot2θ)(1)(cot2θ+1),
=cot6θ+1+3cot2θ(csc2θ).......[∵,(1)],
HOPE IT HELPS! PLEASE MARK ME AS BRAINLY FOR GIVING CORRECT AND MEANINGUL ANSWER! THANKS FOR THE OPPORTUNITY! ALL THE BEST!:):):):):)
Answer:
Option : 2) 7
cosec^6@-cot^6@
=(cosec^2@)^3-(cot^2)^3
use formula
a^3-b^3= (a-b)^3-3ab(a-b)
=(csc^2@-cot^2@)^3+3(csc^2@)(cot^2@)(csc^2@-cot^2@)
As we know csc^2-cot^2=1
=(1)^3+3(csc^2@)(cot^2@)(1)
=1+3cot^2@(1+cot^2@)
=3cot^4@+3cot^2+1
compare with LHS
a=3 , b=3 , c=1
So,
a+b+c= 7
hence option 2 is correct
soln refers to the attachment