Math, asked by bindusabu9143, 7 months ago

if cosec A=13/12 find the value of (2 sin A-3 cos A÷4 sin A -9 cos A)​

Answers

Answered by hogrider10072003
2

answerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Attachments:
Answered by pulakmath007
25

SOLUTION

GIVEN

 \displaystyle \sf{ \cosec A  =  \frac{13}{12} }

TO DETERMINE

 \displaystyle \sf{  \frac{2 \sin A -  3\cos A}{4 \sin A -  9\cos A}  }

EVALUATION

Here it is given that

 \displaystyle \sf{ \cosec A  =  \frac{13}{12} }

We are aware of the Trigonometric identity that

 \displaystyle \sf{  { \cot}^{2} A = {\cosec }^{2}  A  - 1 }

 \implies \displaystyle \sf{  { \cot}^{2} A = {\bigg(  \frac{13}{12} \bigg) }^{2}    - 1 }

 \implies \displaystyle \sf{  { \cot}^{2} A =  \frac{169}{144}     - 1 }

 \implies \displaystyle \sf{  { \cot}^{2} A =  \frac{169 - 144}{144}   }

 \implies \displaystyle \sf{  { \cot}^{2} A =  \frac{25}{144}   }

 \implies \displaystyle \sf{  { \cot} A =  \frac{5}{12}   }

Now

 \displaystyle \sf{  \frac{2 \sin A -  3\cos A}{4 \sin A -  9\cos A}  }

Dividing Numerator and denominator both by SinA we get

 \displaystyle \sf{  \frac{2 \sin A -  3\cos A}{4 \sin A -  9\cos A}  }

 =  \displaystyle \sf{  \frac{2  -  3\cot A}{4  -  9\cot A}  }

 =  \displaystyle \sf{  \frac{2  -  3 \times  \frac{5}{12} }{4  -  9 \times  \frac{5}{12} }  }

 =  \displaystyle \sf{  \frac{ \frac{24 - 15}{12}  }{ \frac{48 - 45}{12} }  }

 =  \displaystyle \sf{  \frac{ \frac{9}{12}  }{ \frac{3}{12} }  }

 =  \displaystyle \sf{   \frac{9}{12}  \times  \frac{12}{3} }

 \sf{ = 3}

FINAL ANSWER

 \boxed{  \:  \: \displaystyle \sf{  \frac{2 \sin A -  3\cos A}{4 \sin A -  9\cos A}  } = 3 \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If cosx=-(⅓) x lies in third quadrant

then cos(x/2) will be

https://brainly.in/question/21370223

Similar questions