Math, asked by gunmeetkaur008, 7 months ago

If cosec A =2 Find 1/tan A +sin A/ 1+ cos A...

Answer me fast....​

Answers

Answered by aswinkochuveetil
0

Answer:

so A is 30 ...then tan 30 1/root 3

sin a 1/2.

cos a root 3 /2

Answered by Uriyella
5

Question :

If   \bf {cosec A = 2,} find  \bf{\dfrac{1}{ \tan A} +  \dfrac{ \sin A}{1 +  \cos A} } ?

Answer :

  • The value of  \bf{\dfrac{1}{ \tan A}  +  \dfrac{ \sin A}{1 +  \cos A} = 2}

Given :

  • cosec A = 2.

To Find :

  • The value of  \bf{\dfrac{1}{ \tan A} +  \dfrac{ \sin A}{1 +  \cos A} }

Solution :

Given,

   : \implies \bf {cosec A = 2}

We know that,

  : \implies \bf { \sin A =  \dfrac{1}{ cosec A}} \\  \\  : \implies \bf  \sin A =  \dfrac{1}{2}

We also know that,

 \bf{  \orange{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet} \:  \:  \sin30^{ \circ}  =  \dfrac{1}{2}}  \\  \\  \:  \:   \bf \therefore \:  \: A = 30^{ \circ}

Therefore,

The equation will be,

  : \implies \bf \dfrac{1}{ \tan 30^{ \circ}  }  +  \dfrac{ \sin {30}^{ \circ}  }{1 +  \cos {30}^{ \circ} }

Where,

 \bf{  \purple{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet} \:  \: \tan {30}^{ \circ} =  \dfrac{1}{ \sqrt{3} } } \\  \\  \bf{  \purple{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet} \:  \:  \sin {30}^{ \circ}  =  \dfrac{1}{2}  } \\  \\  \bf{  \purple{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet} \:  \: \cos {30}^{ \circ}   =  \dfrac{ \sqrt{3} }{2} }

Now, substitute all the values in the equation.

  : \implies \bf { \dfrac{1}{ \dfrac{1}{ \sqrt{3} } }  +  \dfrac{ \dfrac{1}{2} }{1 +  \dfrac{ \sqrt{3} }{2} } } \\  \\  \\   : \implies \bf {1 \times  \dfrac{ \sqrt{3} }{1}  +  \dfrac{ \dfrac{1}{2} }{ \dfrac{2 +  \sqrt{3} }{2} } } \\  \\  \\   : \implies \bf { \sqrt{3}  +  \dfrac{1}{ \not{2}}  \times  \dfrac{ \not{2}}{2 +  \sqrt{3} } } \\  \\  \\

: \implies \bf  \sqrt{3}  +  \dfrac{1}{2 +  \sqrt{3} }  \\  \\  \\   : \implies \bf  \dfrac{ \sqrt{3} }{1}  +  \dfrac{1}{2 +  \sqrt{3} }  \\  \\  \\   : \implies \bf { \dfrac{ (\sqrt{3} \times 2) + ( \sqrt{3}  \times  \sqrt{3}  ) + 1}{2 +  \sqrt{3} }  }\\  \\  \\   : \implies \bf { \dfrac{2 \sqrt{3} +  {( \sqrt{3} )}^{2}   + 1}{2 +  \sqrt{3} } } \\  \\  \\   : \implies \bf { \dfrac{2 \sqrt{3} + 3 + 1 }{2 +  \sqrt{3} } } \\  \\  \\   : \implies \bf { \dfrac{2 \sqrt{3}  + 4}{2 +  \sqrt{3} } } \\  \\  \\   : \implies \bf { \dfrac{2( \sqrt{3}  + 2)}{2 +  \sqrt{3} }  } \\  \\  \\   : \implies \bf { \dfrac{2 \cancel{(2 +  \sqrt{3})} }{ \cancel{2 +  \sqrt{3}} } } \\  \\  \\   : \implies \bf { \dfrac{2}{1} } \\  \\  \\   : \implies \bf {2} \\ \\  \:  \:  \therefore \bf \:  \: \dfrac{1}{ \tan 30^{ \circ}  }  +  \dfrac{ \sin {30}^{ \circ}  }{1 +  \cos {30}^{ \circ} }  = 2

Hence,

The value of  \bf{\dfrac{1}{ \tan A}  +  \dfrac{ \sin A}{1 +  \cos A} } is 2.

Similar questions