Math, asked by kishallmanchi, 4 months ago

If Cosec A = 2, find the value of 1/tan+ sin/1+cos​

Answers

Answered by itzpriya22
2

Given :-

\sf cosecA = 2

To Find :-

The value of :-

\sf   \dfrac{1}{tanA} + \dfrac{sinA}{1+cosA}

Solution :-

We know :-

\sf sinA = \dfrac{1}{cosecA}

\therefore \sf sinA = \dfrac{1}{2}

We know :-

\sf cos^2A = 1-sin^2A

\longrightarrow \sf cos^2A = 1- \left( \dfrac{1}{2} \right)^2 \\\\\longrightarrow cos^2A = 1- \dfrac{1}{4} \\\\\longrightarrow cos^2A = \dfrac{3}{4} \\\\\longrightarrow cosA = \dfrac{\sqrt{3}}{2}

We know :-

\sf tanA = \dfrac{sinA}{cosA}

\therefore \sf tanA = \dfrac{1}{2} \times \dfrac{2}{\sqrt{3}}

           = \sf \dfrac{1}{\sqrt{3}}

\longrightarrow \sf \dfrac{1}{tanA}+\dfrac{sinA}{1+cosA} = \dfrac{1}{\dfrac{1}{\sqrt{3}}} + \dfrac{\dfrac{1}{2}}{1+ \dfrac{\sqrt{3}}{2}} \\\\\longrightarrow \dfrac{1}{tanA} +\dfrac{sinA}{1+cosA} = \sqrt{3} + \dfrac{\dfrac{1}{2}}{\dfrac{2+\sqrt{3}}{2}} \\\\\longrightarrow \dfrac{1}{tanA} +\dfrac{sinA}{1+cosA} = \sqrt{3} +\dfrac{1}{2+\sqrt{3}} \\\\\longrightarrow \dfrac{1}{tanA} +\dfrac{sinA}{1+cosA} = \dfrac{2\sqrt{3} +3+1}{2+\sqrt{3}}

\longrightarrow \sf \dfrac{1}{tanA} +\dfrac{sinA}{1+cosA} = \dfrac{2\sqrt{3}+4} {2+\sqrt{3}} \\\\\longrightarrow \dfrac{1}{tanA}+\dfrac{sinA}{1+cosA} = \dfrac{2(\sqrt{3}+2)}{2+\sqrt{3}} \\\\\longrightarrow \bf \dfrac{1}{tanA} +\dfrac{sinA}{1+cosA} = 2

Similar questions