Math, asked by gurtek, 1 year ago

If cosec A=2 then find the value of 1/tanA +sin A/ 1+cos A

Answers

Answered by FlavoredClown
508
We have, cosec A = 2

Now, sin A =  \frac{1}{cosec A }
⇒ sin A =  \frac{1}{2}

We know that sin² A + cos² A = 1
⇒ cos² A = 1 - sin² A
⇒ cos A = √(1-sin² A)
⇒ cos A = √{1- (\frac{1}{2})^{2} }
⇒ cos A = √(1 -  \frac{1}{4} )
⇒ cos A = √( \frac{4-1}{4} )
⇒ cos A =  \frac{ \sqrt{3} }{2}

We know that tan A =  \frac{sin A}{cos A}
⇒ tan A =  \frac{1/2}{ \sqrt{3}/2 }
⇒ tan A =  \frac{1}{ \sqrt{3}}

We need to find  \frac{1}{tan A}  \frac{sin A}{1 + cos A}

Substituting the values of each trigonometric function obtained earlier, we get:
 \frac{1}{tan A}  \frac{sin A}{1 + cos A}  \frac{1}{1/ \sqrt{3} }  \frac{1/2}{1 +  \sqrt{3}/2 }
 \sqrt{3}  \frac{1/2}{(2 +  \sqrt{3})/2 }
 \sqrt{3}  \frac{1}{2+ \sqrt{3} }
 \frac{2 \sqrt{3} + 3 + 1 }{2 +  \sqrt{3} }
 \frac{2 \sqrt{3} + 4 }{2 + \sqrt{3} }
 \frac{2 \sqrt{3} + 3 + 1 }{2 + \sqrt{3} } ×  \frac{2- \sqrt{3} } {2-  \sqrt{3} }
=  \frac{4 \sqrt{3} - 6 + 8 - 4 \sqrt{3} }{4-3}  
= 8-6
= 2
Answered by crazyqueen57
7

If cosec A=2 then find the value of 1/tanA +sin A/ 1+cos A

Similar questions