If cosec A=2 then find the value of 1/tanA +sin A/ 1+cos A
Answers
Answered by
508
We have, cosec A = 2
Now, sin A =
⇒ sin A =
We know that sin² A + cos² A = 1
⇒ cos² A = 1 - sin² A
⇒ cos A = √(1-sin² A)
⇒ cos A = √{1- }
⇒ cos A = √(1 - )
⇒ cos A = √()
⇒ cos A =
We know that tan A =
⇒ tan A =
⇒ tan A =
We need to find +
Substituting the values of each trigonometric function obtained earlier, we get:
+ = +
= +
= +
=
=
= ×
=
= 8-6
= 2
Now, sin A =
⇒ sin A =
We know that sin² A + cos² A = 1
⇒ cos² A = 1 - sin² A
⇒ cos A = √(1-sin² A)
⇒ cos A = √{1- }
⇒ cos A = √(1 - )
⇒ cos A = √()
⇒ cos A =
We know that tan A =
⇒ tan A =
⇒ tan A =
We need to find +
Substituting the values of each trigonometric function obtained earlier, we get:
+ = +
= +
= +
=
=
= ×
=
= 8-6
= 2
Answered by
7
If cosec A=2 then find the value of 1/tanA +sin A/ 1+cos A
Similar questions