Math, asked by Anonymous, 4 days ago

If cosec A = √2, then find the value of :


 \boxed{ \sf \:  \frac{2 {sin}^{2} A + 3 {cot}^{2}A }{4 {tan}^{2} A -  {cos}^{2}A } }

Answers

Answered by Starrex
9

Aиѕωєr —

 \qquad{\pmb{\bf{\leadsto \dfrac{8}{7}}}}

Giνєи —

  • Cosec A = √2,

Tσ Fiиd —

  •  { \sf \: \dfrac{2 {sin}^{2} A + 3 {cot}^{2}A }{4 {tan}^{2} A - {cos}^{2}A } }

Sσℓυтiσи –

  • We have , cosec A =√2

Tнєrєfσrє —

sinA :

\quad\rm{\implies sinA =\dfrac{1}{cosecA}}

\quad{\pmb{\rm{\implies sinA =\dfrac{1}{\sqrt{2}}}}}

cosA :

\quad\rm{\implies cosA =\sqrt{1-sin^2 A}}

\quad\rm{\implies cosA = \sqrt{1-\left(\dfrac{1}{\sqrt{2}}\right)^2} }

\quad\rm{\implies cosA =\sqrt{1-\dfrac{1}{2}}}

\quad\rm{\implies cosA =\sqrt{\dfrac{1}{2}} }

\quad{\pmb{\rm{\implies cosA =\dfrac{1}{\sqrt{2}}}}}

tanA :

\quad\rm{\implies tanA =\dfrac{sinA}{cosA}}

\quad\rm{\implies tanA =\dfrac{\cancel{\dfrac{1}{\sqrt{2}}}}{\cancel{\dfrac{1}{\sqrt{2}}}}}

\quad{\pmb{\rm{\implies tanA = 1}} }

cotA :

\quad\rm{\implies cotA =\dfrac{1}{tanA}}

\quad\rm{\implies cotA = \dfrac{1}{1}}

\quad{\pmb{\rm{\implies cotA =1}}}

Hєиcє —

\quad\rm{\longrightarrow \dfrac{2sin^2 A + 3 cot^2 A }{4tan^2 A - cos ^2 A} }

\quad\rm{\longrightarrow  \dfrac{2\times \left(\dfrac{1}{\sqrt{2}}\right)^2+3(1)^2}{4(1)^2 -\left(\dfrac{1}{\sqrt{2}}\right)^2}}

\quad\rm{\longrightarrow  \dfrac{2\times \dfrac{1}{2} +3}{4-\dfrac{1}{2}}}

\quad\rm{\longrightarrow \dfrac{1+3}{\dfrac{7}{2}} }

\quad\rm{\longrightarrow \dfrac{4\times 2}{7} }

\quad{\pmb{\rm{\longrightarrow \dfrac{8}{7} }}}

Similar questions