if cosec A= 5/3 then what is the value of cosec A + tan A
Answers
Cosec A = 5/3.
Value of Cosec A + tan A .
Given , cosec A= 5/3
We know :
Substituiting the values ,
Also,
Acc to question,
------------------------------------
Know More :-
- ❥ Cosec A = 1/sin A
- ❥ Tan A = sin A/cos A
- ❥ CotA= 1/tan A=cosA/sinA
- ❥ tan²A=sec²A-1
- ❥ Cos²A+sin²A=1
----------------------------------
HOPE IT HELPS !
\begin{gathered}\bigstar \underline{\underline{\sf \bf Given:-}}\\\\\end{gathered}
★
Given:−
Cosec A = 5/3.
\begin{gathered}\\\end{gathered}
\begin{gathered}\bigstar \underline{\underline{\sf \bf To\ Find:-}}\\\\\end{gathered}
★
To Find:−
Value of Cosec A + tan A .
\begin{gathered}\\\end{gathered}
\begin{gathered}\bigstar \underline{\underline{\sf \bf Solution:-}}\\\\\end{gathered}
★
Solution:−
Given , cosec A= 5/3
\begin{gathered}\\\end{gathered}
We know :
\begin{gathered}\\\end{gathered}
\mapsto \boxed{\boxed{\orange{\sf Cosec^2 A = cot^2 A+1}}}↦
Cosec
2
A=cot
2
A+1
Substituiting the values ,
\begin{gathered}\\\end{gathered}
\begin{gathered}:\implies \sf (\frac{5}{3} )^2 = cot^2 A+1\\\\\\:\implies \sf \frac{25}{9} -1=cot^2A\\\\\\:\implies \sf \frac{25-9}{9} =cot^2A\\\\\\:\implies \sf cot\ A=\sqrt{\frac{16}{9} } = \frac{4}{3} \\\\\\\end{gathered}
:⟹(
3
5
)
2
=cot
2
A+1
:⟹
9
25
−1=cot
2
A
:⟹
9
25−9
=cot
2
A
:⟹cot A=
9
16
=
3
4
Also,
\begin{gathered}\\\end{gathered}
\begin{gathered}\mapsto \sf \boxed{\boxed{\pink{\sf cot\ A=\frac{1}{tanA} }}}\\\\\end{gathered}
↦
cot A=
tanA
1
\begin{gathered}:\implies \sf \bold{Tan\ A = \frac{3}{4} }\\\\\\\end{gathered}
:⟹Tan A=
4
3
Acc to question,
\begin{gathered}\\\end{gathered}
\begin{gathered}:\implies \sf Cosec\ A+tan\ A =\frac{5}{3} +\frac{3}{4} \\\\\\:\implies \sf \frac{20+9}{12} = 29/12.\\\\\\\therefore \orange{\boxed{\sf Cosec\ A+tan\ A=\frac{29}{12} }}\\\\\\\end{gathered}
:⟹Cosec A+tan A=
3
5
+
4
3
:⟹
12
20+9
=29/12.
∴
Cosec A+tan A=
12
29
------------------------------------
Know More :-
\begin{gathered}\\\end{gathered}
❥ Cosec A = 1/sin A
❥ Tan A = sin A/cos A
❥ CotA= 1/tan A=cosA/sinA
❥ tan²A=sec²A-1
❥ Cos²A+sin²A=1
\begin{gathered}\\\end{gathered}
----------------------------------
HOPE IT HELPS !