Math, asked by Anonymous, 6 months ago

if cosec A= 5/3 then what is the value of cosec A + tan A​

Answers

Answered by Anonymous
53

\bigstar \underline{\underline{\sf \bf Given:-}}\\\\

Cosec A = 5/3.

\\

\bigstar \underline{\underline{\sf \bf To\ Find:-}}\\\\

Value of Cosec A + tan A .

\\

\bigstar \underline{\underline{\sf \bf Solution:-}}\\\\

Given , cosec A= 5/3

\\

We know :

\\

 \mapsto \boxed{\boxed{\orange{\sf Cosec^2 A = cot^2  A+1}}}

Substituiting the values ,

\\

:\implies \sf (\frac{5}{3} )^2 = cot^2 A+1\\\\\\:\implies \sf \frac{25}{9} -1=cot^2A\\\\\\:\implies \sf \frac{25-9}{9} =cot^2A\\\\\\:\implies \sf cot\ A=\sqrt{\frac{16}{9} } = \frac{4}{3} \\\\\\

Also,

\\

\mapsto \sf \boxed{\boxed{\pink{\sf cot\ A=\frac{1}{tanA} }}}\\\\

:\implies \sf \bold{Tan\ A = \frac{3}{4} }\\\\\\

Acc to question,

\\

:\implies \sf Cosec\ A+tan\ A =\frac{5}{3} +\frac{3}{4} \\\\\\:\implies \sf \frac{20+9}{12} = 29/12.\\\\\\\therefore \orange{\boxed{\sf Cosec\ A+tan\ A=\frac{29}{12} }}\\\\\\

------------------------------------

Know More :-

\\

  • ❥ Cosec A = 1/sin A
  • ❥ Tan A = sin A/cos A
  • ❥ CotA= 1/tan A=cosA/sinA
  • ❥ tan²A=sec²A-1
  • ❥ Cos²A+sin²A=1

\\

----------------------------------

HOPE IT HELPS !

Answered by MissIgnite
0

\begin{gathered}\bigstar \underline{\underline{\sf \bf Given:-}}\\\\\end{gathered}

Given:−

Cosec A = 5/3.

\begin{gathered}\\\end{gathered}

\begin{gathered}\bigstar \underline{\underline{\sf \bf To\ Find:-}}\\\\\end{gathered}

To Find:−

Value of Cosec A + tan A .

\begin{gathered}\\\end{gathered}

\begin{gathered}\bigstar \underline{\underline{\sf \bf Solution:-}}\\\\\end{gathered}

Solution:−

Given , cosec A= 5/3

\begin{gathered}\\\end{gathered}

We know :

\begin{gathered}\\\end{gathered}

\mapsto \boxed{\boxed{\orange{\sf Cosec^2 A = cot^2 A+1}}}↦

Cosec

2

A=cot

2

A+1

Substituiting the values ,

\begin{gathered}\\\end{gathered}

\begin{gathered}:\implies \sf (\frac{5}{3} )^2 = cot^2 A+1\\\\\\:\implies \sf \frac{25}{9} -1=cot^2A\\\\\\:\implies \sf \frac{25-9}{9} =cot^2A\\\\\\:\implies \sf cot\ A=\sqrt{\frac{16}{9} } = \frac{4}{3} \\\\\\\end{gathered}

:⟹(

3

5

)

2

=cot

2

A+1

:⟹

9

25

−1=cot

2

A

:⟹

9

25−9

=cot

2

A

:⟹cot A=

9

16

=

3

4

Also,

\begin{gathered}\\\end{gathered}

\begin{gathered}\mapsto \sf \boxed{\boxed{\pink{\sf cot\ A=\frac{1}{tanA} }}}\\\\\end{gathered}

cot A=

tanA

1

\begin{gathered}:\implies \sf \bold{Tan\ A = \frac{3}{4} }\\\\\\\end{gathered}

:⟹Tan A=

4

3

Acc to question,

\begin{gathered}\\\end{gathered}

\begin{gathered}:\implies \sf Cosec\ A+tan\ A =\frac{5}{3} +\frac{3}{4} \\\\\\:\implies \sf \frac{20+9}{12} = 29/12.\\\\\\\therefore \orange{\boxed{\sf Cosec\ A+tan\ A=\frac{29}{12} }}\\\\\\\end{gathered}

:⟹Cosec A+tan A=

3

5

+

4

3

:⟹

12

20+9

=29/12.

Cosec A+tan A=

12

29

------------------------------------

Know More :-

\begin{gathered}\\\end{gathered}

❥ Cosec A = 1/sin A

❥ Tan A = sin A/cos A

❥ CotA= 1/tan A=cosA/sinA

❥ tan²A=sec²A-1

❥ Cos²A+sin²A=1

\begin{gathered}\\\end{gathered}

----------------------------------

HOPE IT HELPS !

Similar questions