if cosec a + cot a = k
then prove that cos a = (k²-1)/(k²+1)
Answers
Answered by
4
Answer:
Step-by-step explanation:
cosec β + cot β = k
⇒1/sin β + cos β/sin β = k
⇒(1 + cos β) / sin β = k
⇒(1 + cos β) / √(1 - cos² β) = k
⇒(1 + cos β) / √(1 + cos β)(1 - cos β)= k
⇒√[(1 + cos β) / (1 - cos β)] = k
⇒(1 + cos β) / (1 - cos β) = k²/1
⇒[(1 + cos β) - (1 - cos β) ]/[(1 - cos β) + (1 + cos β) ] = (k²-1)/(k²+1)
(using the formula if \frac{a}{b} = \frac{c}{d}
then \frac{a-b}{a+b} = \frac{c-d}{c+d} )
⇒(2 cos β)/ 2 = (k²-1)/(k²+1)
⇒cos β = (k²-1)/(k²+1)
yeshu50:
tq bro
Similar questions
Computer Science,
7 months ago
Computer Science,
7 months ago
Biology,
7 months ago
Math,
1 year ago
Physics,
1 year ago
Hindi,
1 year ago