If (cosec A+ cot A) = m then prove that m² 4 = cos 0.
Answers
Answered by
2
Step-by-step explanation:
Let, cosecA+cotA=m
Then
m2−1m2+1
=cosec2A+cot2A+2cosecA.cotA−1cosec2A+cot2A+2cosecA.cotA+1
=2cot2A+2cosecA.cotA2cosec2A+2cosecA.cotA [Since cosec2A−1=cot2A and 1+cot2A=cosec2A]
=cotAcosecA=secA..(1).
Now
m2+1m2−1=cosA [Using (1)]
Similar questions
Computer Science,
18 days ago
Math,
1 month ago
Math,
1 month ago
Geography,
9 months ago
Math,
9 months ago