if cosec a +cot a =mshow that m^2-1/m^2+1 =cos a
Answers
Answered by
1
It is given that cosec{\theta}+cot{\theta}=m, then
\frac{1}{sin{\theta}}+\frac{cos{\theta}}{sin{\theta}}=m
\frac{1+cos{\theta}}{sin{\theta}}=m
(\frac{1+cos{\theta}}{sin{\theta}})^2=m^2
m^2=\frac{1+cos^2{\theta}+2cos{\theta}}{sin^2{\theta}}
Now, \frac{m^2-1}{m^2+1}=\frac{1+cos^2{\theta}+2cos{\theta}-sin^2{\theta}}{1+cos^2{\theta}+2cos{\theta}+sin^2{\theta}}
\frac{m^2-1}{m^2+1}=\frac{2cos^2{\theta}+2cos{\theta}}{2+2cos{\theta}}
Answer:
up
Step-by-step explanation:
mark me as brainlist please
follow me i follow you back
give thanks❤❤❤❤
Similar questions