if cosec a +cot a =q
prove that cosec a - cot a =1/q
and hence find values of sin a and sec a
Answers
Given : cosec a+cot a = q ---------> 1
We know that cosec²Ф-cot²Ф = 1
(cosec a+cot a)+(cosec a-cot a) = 1
cosec a-cot a = 1/(cosec a+cot a)
cosec a-cot a = 1/q -------> 2
∴ Hence proved.
Equation 1 & Equation 2
cosec a+cot a = q
cosec a-cot a = 1/q
-----------------------------------
2cosec a +0 = q+1/q
2cosec a = (q²+1)/q
cosec a = (q²+1)/2q
(1/sin a) = (q²+1)/2q
sin a = 2q/(q²+1)
∴sin a = 2q/(q²+1)
sec a = ?
We know that sin²Ф+cos²Ф = 1
[2q/(q²+1)]²+cos²Ф =1
cos² a = 1-[2q/(q²+1)]²
cos² a = 1-4q²/(q²+1)²
cos² a = [(q²)²+1²+2.q².1-4q²]/(q²+1)²
cos² a = [(q²)²+1²-2.q².1]/(q²+1)²
cos² a = (q²-1)/(q²+1)
∴cos² a = (q²-1)/(q²+1)