Math, asked by XxllMrRDXllxX001, 20 hours ago

If cosec A - cot A = q then the value of q^2 - 1/q^2+1 +cos a is

Answers

Answered by alishakhan6692
3

Answer:

your answer if helpful so please mark it as brain list answer

Step-by-step explanation:

answer is 0

why you changed your photo in dp

Attachments:
Answered by smithasijotsl
1

Answer:

\frac{q^2 - 1}{q^2+1} +cos A  = 0

Step-by-step explanation:

Given,

cosec A - cot A = q

To find

\frac{q^2 - 1}{q^2+1} +cos A

Recall the formula

cosec²A - cot² A = 1

Solution:

q = cosec A -  cotA

q² = (cosec A - cot A)²

= cosec²A +cot²A - 2 cosecA cotA

q² - 1 = cosec²A +cot²A - 2 cosecA cotA - 1

= (cosec²A  - 1)+cot²A - 2 cosecA cotA

= cot²A + cot²A - 2 cosecA cotA

= 2cot²A - 2 cosecA cotA

= 2cotA(cotA - cosecA)

q² - 1 = 2cotA(cotA - cosecA)

q² + 1 = cosec²A +cot²A - 2 cosecA cotA + 1

=cosec²A +cosec²A - 2 cosecA cotA

= 2cosec²A - 2 cosecA cotA

= 2cosecA( cosec A - cotA)

= -2cosecA (cotA - cosecA)

q² + 1 =- 2cosecA( cot A - cosecA)

\frac{q^2 - 1}{q^2+1}  = \frac{2cotA(cotA - cosecA)}{-2cosec A( cot A - cosec A)}

= -\frac{cot A}{cosec A}

=-\frac{cosA/sinA}{1/sinA}

= - cosA

\frac{q^2 - 1}{q^2+1} +cos A = - cosA + cosA = 0

\frac{q^2 - 1}{q^2+1} +cos A  = 0

#SPJ3

Similar questions