Math, asked by abhishekthn2548, 4 months ago

if cosec A + cot A= x then cosec A equals to​

Answers

Answered by reenubandral
0

cosecθ−cotθ=x

cosecθ−cotθ=xsinθ

cosecθ−cotθ=xsinθ1

cosecθ−cotθ=xsinθ1

cosecθ−cotθ=xsinθ1 −

cosecθ−cotθ=xsinθ1 − sinθ

cosecθ−cotθ=xsinθ1 − sinθcosθ

cosecθ−cotθ=xsinθ1 − sinθcosθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =x

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =x

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ)

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ)

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =x

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =x

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x1+cosθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x1+cosθsinθx

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x1+cosθsinθxsinθ

cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x1+cosθsinθxsinθ1+ccos= x/1

(1)

(1)Now

(1)Now cosecθ+cotθ=

(1)Now cosecθ+cotθ= sinθ

(1)Now cosecθ+cotθ= sinθ1 + sinθ

cos = sinθ1+ccos =

= x/1

= x/1Hence cosecθ+cotθ=

= x/1Hence cosecθ+cotθ= x/1

Attachments:
Similar questions