if cosec A + cot A= x then cosec A equals to
Answers
cosecθ−cotθ=x
cosecθ−cotθ=xsinθ
cosecθ−cotθ=xsinθ1
cosecθ−cotθ=xsinθ1
cosecθ−cotθ=xsinθ1 −
cosecθ−cotθ=xsinθ1 − sinθ
cosecθ−cotθ=xsinθ1 − sinθcosθ
cosecθ−cotθ=xsinθ1 − sinθcosθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =x
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =x
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ)
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ)
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =x
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =x
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x1+cosθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x1+cosθsinθx
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x1+cosθsinθxsinθ
cosecθ−cotθ=xsinθ1 − sinθcosθ =xsinθ1−cosθ =xsinθ1−cosθ (1+cosθ)(1+cosθ) =xsinθ(1+cosθ)1−cos 2 θ =xsinθ(1+cosθ)sin 2 θ =x1+cosθsinθxsinθ1+ccos= x/1
(1)
(1)Now
(1)Now cosecθ+cotθ=
(1)Now cosecθ+cotθ= sinθ
(1)Now cosecθ+cotθ= sinθ1 + sinθ
cos = sinθ1+ccos =
= x/1
= x/1Hence cosecθ+cotθ=
= x/1Hence cosecθ+cotθ= x/1