If cosec A + sec A = cosec B + sec B then prove that tanA tanB = cot A+B/2
I want step by step explaination I will make u as brainliest please please
Attachments:
Answers
Answered by
5
ANSWER:
GIVEN:
cosec A +sec A = cosec B +sec B
TO PROOVE:
tan A.tan B= cot (A+B /2)
PROOF:
cosec A+ sec A = cosec B + sec B
=> 1/sin A + 1/ cos A = 1/ cos B + 1/ sin B
=>cos A + sin A/ sin A cos A = cos B + sin B / sin B cos B
=> sin A sin B cos B + cos B sin A cos A + sin A sin B cos A
=> sin A sin B cos A - sin A sin B cos B = cos A cos B sin B - cos A cos B sin A
=> sin A sin B ( cos A - Cos B) = cos A cos B ( sin B - sin A )
=> sin A sin B [ 2 sin (A+B /2) sin (B- A /2) ] = cos A cos B [ 2 cos (A+B/2) sin (B-A/2) ]
=> sin A sin B/ cos A cos B = cos (A+B/2)/ sin (A+B/2)
=> tan A tan B = cot (A+B/2)
hence proved.....
♡♡♡Mark as brainliest ♡♡♡
Similar questions