. If cosec A = V3 , find the value of cot A+
Si. A
1 + cosA
Answers
Answered by
0
Answer:
if cosec A = √3
then sin A = 1/cosec A
=opposite/hypothesis
Sin A = 1/√3
Cos A = adjacent/hypothesis
we know hypothesis = √3
so by using Pythagoras theorem
let's take adjacent side as A
so,
(√3)^2 = (1)^2 + A^2
A^2 = 3-1
A^2=2
A=√2
so,
Cos A = √2/√3
Cot A = CosA/ SinA
= √2/√3÷1/√3
so,
Cot A = √2
Cot A + Sin A = √2 + 1/√3
= √2√3 +1/√3
So, Cot A+ Sin A = √2
1 + Cos A = 1+ √2/√3
= √3+√2/√3
= √2
So,
1 + CosA = √2
hope this helps you
Similar questions