If cosec θ + cot θ = k. then prove that cos teta =k²-1/k²+1.
Answers
Answered by
2
Answer:
hope it may help you.
please mark me as brainliest.
Step-by-step explanation:
Attachments:
Answered by
8
Answer:-
Theta is taken as "A".
Given:
Cosec A + Cot A = k
→ (1/Sin A) + (Cos A/Sin A) = k
[ Cosec A = 1/Sin A ; Cot A = Cos A/Sin A ]
→ (1 + Cos A)/Sin A = k
Squaring both sides we get,
→ (1 + Cos A)²/Sin² A = k²
→ (1 + Cos A)(1 + Cos A)/(1 - Cos² A) = k²
[ Sin² A + Cos² A = 1 => Sin² A = 1 - Cos² A ]
→ (1 + Cos A)(1 + Cos A)/(1 + Cos A)(1 - Cos A) = k²
[ a² - b² = (a + b)(a - b) ]
→ (1 + Cos A)/(1 - Cos A) = k²
→ (1 + Cos A) = k²(1 - Cos A)
→ 1 + Cos A = k² - k² Cos A
→ Cos A + k² Cos A = k² - 1
→ Cos A (1 + k²) = k² - 1
→ Cos A = (k² - 1)/(1 + k²)
→ Cos A = (k² - 1)(k² + 1)
Hence, Proved.
Attachments:
Similar questions