Math, asked by clasher2455, 1 day ago

If cosec θ + cot θ = p, show that cos θ = (P2 -1) / (P2+1)?​

Answers

Answered by GJYOTI
0

Answer:

Hence Proved, Cos∅ = (P^{2} -1)/(P^{2} +1)

Step-by-step explanation:

Given,

Cosec∅ + Cot∅ = P

We know, Cosec∅ = 1/Sin∅  and Cot∅ = Cos∅/Sin∅

Therefore, we can written the above equation as

1/Sin∅ + Cos∅/Sin∅ = P

(1 + Cos∅)/Sin∅ = P

Squaring on both Sides, We get

(1 +Cos∅)2 /Sin^{2}∅ = P^{2}/1

Now, (Numerator - Denominator)/(Numerator + Denominator), then

{(1 +Cos∅)2 - Sin^{2}∅}/{(1 +Cos∅)2 + Sin^{2}∅} = (P^{2} - 1)/(P^{2} + 1)

{1 +Cos^{2}∅ + 2Cos∅ - Sin^{2}∅}/{1 + Cos^{2}∅ + 2Cos∅ + Sin^{2}∅} = (P^{2} - 1)/(P^{2} + 1)

{2Cos^{2}∅ + 2Cos∅}/{2 + 2Cos∅} = (P^{2} - 1)/(P^{2} + 1)

2Cos∅{Cos∅ + 1}/2{Cos∅ + 1} = (P^{2} - 1)/(P^{2} + 1)

Thus, Cos∅ = (P^{2} - 1)/(P^{2} + 1).

Hence Proved.

Answered by sandy1816
0

given

 \cosec \theta +  \cot \theta = p

Now RHS

 \frac{ {p}^{2}  - 1}{ {p}^{2}  + 1}  \\  \\  =  \frac{( {cosec \theta +  \cot \theta})^{2}  - 1}{( {cosec \theta + cot \theta})^{2}  + 1}  \\  \\  =  \frac{2 {cot}^{2}  \theta + 2cosec \theta cot \theta}{2 {cosec}^{2} \theta + 2cosec \theta cot \theta }

 =  \frac{2cot \theta(cot \theta + cosec \theta)}{2coec \theta(cosec \theta + cot \theta)}  \\  \\  =  \frac{cot \theta}{cosec \theta}  \\  \\  = cos \theta

Similar questions