If cosec θ + cot θ = p, show that cos θ = (P2 -1) / (P2+1)?
Answers
Answered by
0
Answer:
Hence Proved, Cos∅ =
Step-by-step explanation:
Given,
Cosec∅ + Cot∅ = P
We know, Cosec∅ = 1/Sin∅ and Cot∅ = Cos∅/Sin∅
Therefore, we can written the above equation as
1/Sin∅ + Cos∅/Sin∅ = P
(1 + Cos∅)/Sin∅ = P
Squaring on both Sides, We get
(1 +Cos∅)2 /∅ = /1
Now, (Numerator - Denominator)/(Numerator + Denominator), then
{(1 +Cos∅)2 - ∅}/{(1 +Cos∅)2 + ∅} = ( - 1)/( + 1)
{1 +∅ + 2Cos∅ - ∅}/{1 + ∅ + 2Cos∅ + ∅} = ( - 1)/( + 1)
{2∅ + 2Cos∅}/{2 + 2Cos∅} = ( - 1)/( + 1)
2Cos∅{Cos∅ + 1}/2{Cos∅ + 1} = ( - 1)/( + 1)
Thus, Cos∅ = ( - 1)/( + 1).
Hence Proved.
Answered by
0
given
Now RHS
Similar questions
Environmental Sciences,
16 hours ago
Hindi,
16 hours ago
India Languages,
1 day ago
Math,
1 day ago
Physics,
8 months ago
Math,
8 months ago