If cosec θ + cot θ = p, show that (p² + 1)/(p² - 1) = sec θ
Answers
Given:
- cosec θ + cos θ = p
To prove:
- (p² + 1)/(p² - 1) = sec θ
Proof:
We have,
➟ p = cosec θ + cos θ
➟ p² = cosec²θ + cot²θ + 2 cosec θ cot θ
➟ p² = 1/sin²θ + 1/tan²θ + 2/(sin θ tan θ)
As tan θ = sin θ/cos θ,
➟ p² = 1/sin²θ + cos²θ/sin²θ + 2 cos θ/sin²θ
➟ p² = (cos²θ + 2 cos θ + 1)/sin²θ
➟ p² = [(cos θ)² + 2 × (cos θ) × 1 + (1)²]/sin²θ
As sin²θ + cos²θ = 1,
➟ sin²θ = 1 - cos²θ
➟ p² = (cos θ + 1)²/(1 - cos²θ)
As a² - b² = (a + b)(a - b), so,
➟ p² = [(cos θ + 1)(cos θ + 1)]/[(1 + cos θ)(1 - cos θ)]
➟ p² = (1 + cos θ)/(1 - cos θ)
Now, taking LHS,
➟ (p² + 1)/(p² - 1)
➟ [(1 + cos θ)/(1 - cos θ) + 1] ÷ [(1 + cos θ)/(1 - cos θ) - 1]
➟ (1 + cos θ + 1 - cos θ)/(1 - cos θ) ÷ (1 + cos θ - 1 + cos θ)/(1 - cos θ)
➟ 2/(1 - cos θ) ÷ (2 cos θ)/(1 - cos θ)
➟ 2/(1 - cos θ) × (1 - cos θ)/(2 cos θ)
➟ 2/(2 cos θ)
➟ 1/cos θ
➟ sec θ [1/cos θ = sec θ]
➟ RHS
Hence, proved!
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀
★ Formula used:
- tan θ = sin θ/cos θ
- sin²θ + cos²θ = 1
- sec θ = 1/cos θ
- cot θ = 1/tan θ