Math, asked by dhwanil1912, 19 hours ago

If cosec Ø =
=
1/2 cotØ, then find sin Ø.

Answers

Answered by rk500raghvendra
11

\huge\bold{\color{aqua}{Solution :-}}

\bold{\blue{cosec\:Ø}\:=\:\green{\frac{1}{2}\:cot\:Ø}}

\bold{\blue{To \:find\:}\red{sin\:Ø}}

\quad\bold{cosec\:Ø\:=\:\frac{1}{2}\:cot\:Ø}

\Rightarrow\bold{\frac{1}{sin\:Ø}×\frac{1}{cot\:Ø}\:=\:\frac{1}{2}\qquad\qquad\therefore\orange{cosec\:A=\frac{1}{sin\:A}}}

\Rightarrow\bold{\frac{1}{sin\:Ø}×\frac{1}{\frac{cos\:Ø}{sin\:Ø}}\:=\:\frac{1}{2}\qquad\qquad\therefore\orange{cot\:A=\frac{cos\:A}{sin\:A}}}

\Rightarrow\bold{\frac{1}{sin\:Ø}×\frac{sin\:Ø}{cos\:Ø}\:=\:\frac{1}{2}}

\Rightarrow\bold{\frac{1}{\red{\cancel{\blue{sin\:Ø}}}}×\frac{\red{\cancel{\blue{sin\:Ø}}}}{cos\:Ø}\:=\:\frac{1}{2}}

\Rightarrow\bold{\frac{1}{cos\:Ø}\:=\:\frac{1}{2}}

\Rightarrow\bold{\green{\boxed{\red{cos\:Ø\:}=\pink{\:2}}}}

\bold{\purple{\text{Since the value of cos Ø can't be more than 1 but here we}}}

\bold{\purple{\text{are getting value of cos Ø = 2 which is greater than 1 }}}

\bold{\purple{\text{henceforth this question is wrong, we can't find real value}}}

\bold{\purple{\text{of sin Ø}}}

Similar questions