If cosec θ – sin θ = a , sec – cos = b , find the value of a b ?
Answers
Answered by
4
cosec θ - sin θ = a
1/sin θ - sin θ = a
( 1 - sin ^2)/sin θ = a
cos ^2 θ / sin θ = a.
sec θ - cos θ = b.
1 / cos θ - cos θ = b.
( 1 - cos ^2 θ ) / cos θ = b.
sin ^2 θ / cos θ = b.
ab = cos ^2 θ/ sin θ * sin ^2 θ / cos θ
= cos θ sin θ.
1/sin θ - sin θ = a
( 1 - sin ^2)/sin θ = a
cos ^2 θ / sin θ = a.
sec θ - cos θ = b.
1 / cos θ - cos θ = b.
( 1 - cos ^2 θ ) / cos θ = b.
sin ^2 θ / cos θ = b.
ab = cos ^2 θ/ sin θ * sin ^2 θ / cos θ
= cos θ sin θ.
Answered by
2
Hey
a = cosec@ - sin@
a = 1/sin@ - sin@
a = 1 - sin²@ / sin@
a = cos²@ / sin@ ––( i )
And ,
b = sec@ - cos@
b = 1/cos@ - cos@
b = 1 - cos²@ / cos@
b = sin²@ / cos@ ——( ii )
So now ,
ab = cos²@ / sin@ × sin²@ / cosa
ab = cos@ × sin@
So , required answer is cos@ × sin@
thanks :)
a = cosec@ - sin@
a = 1/sin@ - sin@
a = 1 - sin²@ / sin@
a = cos²@ / sin@ ––( i )
And ,
b = sec@ - cos@
b = 1/cos@ - cos@
b = 1 - cos²@ / cos@
b = sin²@ / cos@ ——( ii )
So now ,
ab = cos²@ / sin@ × sin²@ / cosa
ab = cos@ × sin@
So , required answer is cos@ × sin@
thanks :)
Similar questions