If cosec |-sin |=l and sec |- cos |=m, prove that l2m2(l2+m2+3)=1
Answers
:
1 answer · Mathematics
Best Answer
cosec(A) - sin(A) = l
⇒ 1/sin(A) - sin(A) = l
⇒ l² = 1/sin²(A) + sin²(A) - 2
---------
sec(A) - cos(A) = m
⇒ 1/cos(A) - cos(A) = m
⇒ m² = 1/cos²(A) + cos²(A) - 2
----------
l²m² = [1/sin²(A) + sin²(A) - 2] [1/cos²(A) + cos²(A) - 2] =
= 1/(sin²(A)cos²(A)) + cos²(A)/sin²(A) - 2/sin²(A) + sin²(A)/cos²(A) + sin²(A)cos²(A) - 2sin²(A) - 2/cos²(A) - 2cos²(A) + 4 =
= 1/(sin²(A) + 1/cos²(A)) + (1 - sin²(A))/sin²(A) + (1 - cos²(A))/cos²(A) - 2(1/sin²(A) + 1/cos²(A)) - 2(sin²(A) + cos²(A)) + 4 + sin²(A)cos²(A) =
= -1/sin²(A) + 1/cos²(A) + 1/sin²(A) - 1 + 1/cos²(A) - 1 - 2 + 4 + sin²(A)cos²(A) =
= sin²(A)cos²(A)
--------------
l² + m² + 3 = sin²(A) + 1/sin²(A) - 2 + cos²(A) + 1/cos²(A) - 2 + 3 =
= 1 - 4 + 3 + 1/(sin²(A)cos²(A)) =
= 1/(sin²(A)cos²(A))
-------------
⇒ l²m² (l² + m² + 3) = sin²(A)cos²(A) / [sin²(A)cos²(A)] = 1