Math, asked by ShashankThakur, 1 year ago

If cosec-sin =m^3 and sec -cos =n^3 then prove that m^4n^2+m^2n^4=1.

Answers

Answered by jaggu18
10
your answer for above question
Attachments:
Answered by amitnrw
3

m⁴n²  + m²n⁴ = 1  if Cosec - Sin = m³  & sec -cos =n³

Step-by-step explanation:

Cosec - Sin = m³

=> 1/Sin - Sin = m³

=> 1 - Sin²  = m³Sin

=> Cos² = m³Sin

=>  m³ = Cos²/Sin

sec -cos =n³

=1/Cos - Cos = n³

=> Sin² = n³Cos

=> Sin²/Cos² = n³Cos/m³Sin

=> Sin³/Cos³ = n³/m³

=> Sin/Cos = n/m

=> tan = n/m

=> n = mtan

LHS

= m⁴n²  + m²n⁴

= m⁴(mtan)² + m²(mtan)⁴

= m⁶tan² + m⁶tan⁴

= (m³)²tan²(1 + tan²)

= (Cos²/Sin)² tan²Sec²

=Cos² * Cos² * tan²Sec²/Sin²

= Cos² * Sin² * sec²/Sin²

= Cos² * Sec²

= 1

= RHS

Learn more:

1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx

https://brainly.in/question/8160834

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

Similar questions