Math, asked by ipsitsharma69321, 7 months ago

If cosec theeta is 5/3find value of tan theeta

Answers

Answered by hrudyagali
0
Given cos theta=5/3
Cos theta =adj/hyp =5/3
By Pythagoreas theorm

AC^2=AB^2+BC^2
3^2=5^2+x^2
x^2=25-9
x=root16
Thus,x=4

Tan theta = opp/adj
=4/5
Answered by Vyomsingh
104

Given:

  • Cosec@ = Hypotenuse/Perpendicular

________________________

To Find→

  • Value of Tan@

________________________

Solution:-

 \implies Cosec@ =  \dfrac{Hypotenuse}{Perpendicular} = \dfrac{5}{3}

Now Applying Pythagoras theorem:

 \implies {base}^{2}  =  {Hypotenuse}^{2}    -  {Perpendicular}^{2}

 \implies base =  \sqrt{{Hypotenuse}^{2}    -    {Perpendicular}^{2} }

 \implies \: base =  \sqrt{ {5}^{2} -  {3}^{2}  }

 \implies base =  \sqrt{16}

 \implies base = 4

___________________________

Tan@ = Perpendicular/base

 \dfrac{3}{4}  \:  \:  \:  \red{answer}

 \bullet \sf Trigonometric Values \\\\\\ \boxed{\begin{array}{c|c|c|c|c|c} \sf Angle & 0^{\circ} & 30^{\circ} & 45^{\circ} & 60^{\circ} & 90^{\circ} \\ \cline{1-6} \sin \theta & 0 & \dfrac{1}{2} & \dfrac{1}{\sqrt{2}} & \dfrac{\sqrt{3}}{2} & 1 \\ \cline{1-6} \cos \theta & 1 & \dfrac{\sqrt{3}}{2} & \dfrac{1}{\sqrt{2}} & \dfrac{1}{2} & 0 \\ \cline{1-6} \tan\theta & 0 & \dfrac{1}{\sqrt{3}} & 1 & \sqrt{3} & \textsf{Not D{e}fined}\end{array}}

Similar questions
Math, 7 months ago