Math, asked by AyeshaAgupatro, 2 months ago

if cosec theta =13/12, find the value of 2 sin theta - 3 cos theta / 4 sin theta - 9 cos theta​

Answers

Answered by ItzArchimedes
24

Solution :-

Given ,

  • cosecθ = \sf\dfrac{13}{12} = \sf\dfrac{Hypotenuse}{opposite}

To find ,

\qquad\bullet \;\dfrac{2\sin\theta-3\cos\theta}{4\sin\theta-9\cos\theta}

Taking a right angled triangle ABC with ,

  • AB = Height = 12
  • BC = Base
  • AC = Hypotenuse = 13

So , using Pythagoras theorem

AC² = AB² + BC²

13² = 12² + BC²

BC = \sf\sqrt{169-144}

BC = \sf\sqrt{25}

BC = 5

Now ,

  • sinθ = \sf\dfrac{12}{13}

  • cosθ = \sf \dfrac{5}{13}

Now , substituting

\longrightarrow \sf\dfrac{2sin\theta-3cos\theta}{4sin\theta-9cos\theta}

\displaystyle\sf\longrightarrow \dfrac{2\bigg(\dfrac{12}{13}\bigg)-3\bigg(\dfrac{5}{13}\bigg)}{4\bigg(\dfrac{12}{13}\bigg)-9\bigg(\dfrac{5}{13}\bigg)}

\displaystyle\sf\longrightarrow \dfrac{\bigg(\dfrac{24}{13}\bigg)-\bigg(\dfrac{15}{13}\bigg)}{\bigg(\dfrac{48}{13}\bigg)-\bigg(\dfrac{45}{13}\bigg)}

\displaystyle\sf\longrightarrow \dfrac{\bigg(\dfrac{24 - 15}{13}\bigg)}{\bigg(\dfrac{48 - 45}{13}\bigg)}

\displaystyle\sf\longrightarrow \dfrac{\bigg(\dfrac{9}{13}\bigg)}{\bigg(\dfrac{3}{13}\bigg)} =  \dfrac{9}{ 3}

\displaystyle\sf\longrightarrow \underline{\boxed{\textbf{\textsf{3}}}}

\therefore \underline{\underline{\sf\orange{Hence, \;\dfrac{2sin\theta-3cos\theta}{4sin\theta-9cos\theta}=3}}}

Answered by Ishu995
45

cosecθ = \sf\dfrac{13}{12}

 = \sf\dfrac{Hypotenuse}{opposite}

To find ,

\qquad\bullet \;\dfrac{2\sin\theta-3\cos\theta}{4\sin\theta-9\cos\theta}

Taking a right angled triangle ABC with ,

AB = Height = 12

BC = Base

AC = Hypotenuse = 13

So , using Pythagoras theorem

AC² = AB² + BC²

13² = 12² + BC²

BC = \sf\sqrt{169-144}

BC = \sf\sqrt{25}

BC = 5

sinθ = \sf\dfrac{12}{13}

cosθ = \sf \dfrac{5}{13}

Then,

\longrightarrow \sf\dfrac{2sin\theta-3cos\theta}{4sin\theta-9cos\theta}

\displaystyle\sf\longrightarrow \dfrac{2\bigg(\dfrac{12}{13}\bigg)-3\bigg(\dfrac{5}{13}\bigg)}{4\bigg(\dfrac{12}{13}\bigg)-9\bigg(\dfrac{5}{13}\bigg)}

\displaystyle\sf\longrightarrow \dfrac{\bigg(\dfrac{24}{13}\bigg)-\bigg(\dfrac{15}{13}\bigg)}{\bigg(\dfrac{48}{13}\bigg)-\bigg(\dfrac{45}{13}\bigg)}

\displaystyle\sf\longrightarrow \dfrac{\bigg(\dfrac{24 - 15}{13}\bigg)}{\bigg(\dfrac{48 - 45}{13}\bigg)}

\displaystyle\sf\longrightarrow \dfrac{\bigg(\dfrac{9}{13}\bigg)}{\bigg(\dfrac{3}{13}\bigg)} = \dfrac{9}{ 3}

\displaystyle\sf\longrightarrow \underline{\boxed{\textbf{\textsf{3}}}}

{\underline{\sf\pink{Hope \: it \: is \: helpful}}}

Similar questions