Math, asked by mohi1314, 1 year ago

If cosec theta=4 and cot theta=√3k the value of k

Answers

Answered by Anonymous
22

Answer :-

Value of k is 5 or - 5.

Explanation :-

Given :-

  • cosec θ = 4

  • cot θ = √3 k

To find :-

Value of k

Solution :-

We know that

cosec² θ - cot² θ = 1

By substituting the given values

⇒ (4)² - (√3 k)² = 1

⇒ 16 - 3k² = 1

⇒ 16 - 1 = 3k²

⇒ 15 = 3k²

⇒ 15/3 = k²

⇒ 5 = k²

⇒ ± √5 = k

⇒ k = ± √5

⇒ k = + 5 or - 5

the value of k is 5 or - 5.

Answered by Anonymous
13

SOLUTION:-

Given:

⚫cosec theta=4

⚫cot theta= √3k

Therefore,

cot \theta =  \sqrt{3k}  \\  \\  =  >  {cot}^{2}  \theta = 3k \\  \\  =  > cosec {}^{2}  \theta - 1 = 3k \:  \:  \:  \:  \: \:  \:  \:  \: [1 +  {cot}^{2}  \theta =  {cosec}^{2}  \theta]\\  \\  =  >  {4}^{2}  - 1 = 3k \:  \:  \:  \:  \:  \:  \: [substituting \: cosec \theta = 4 \: ] \\  \\  =  > 16 - 1 = 3k \\  \\  =  > 15 = 3k \\  \\  =  > k =  \frac{15}{3} \\  \\  =  > k = 5

Thus,

The value of k is 5.

Hope it helps ☺️

Similar questions