Math, asked by jatindchoudhari, 1 year ago

if cosec theta +cot theta =5/2 then the value of tan theta is

Answers

Answered by albychristo
107

Answer:tan a = 20/21

Step-by-step explanation:

cosec a + cot a = 5/2

Cosec^2 a + cot^2 a + 2cosec a. Cota =25/4

Using formula cosec^2 a= 1+cot^2 a,

Cot^2 a +1+ cot^2a + 2coseca. Cot a= 25/4

Rearranging:

2cot a(cot a + cosec a) = 21/4

Substituting cot a+ cosec a = 5/2,

2cot a. 5/2=21/4

Cot a = 21/20

Hence tan a = 20/21

Answered by qwmagpies
6

Thus the value of tan\alpha will be 20/21.

Given:

 \csc( \alpha )  +  \cot( \alpha )  =  \frac{5}{2}

To find: We have to find the value of tan\alpha.

Solution:

We know that-

 { \csc }^{2}  \alpha -  { \cot }^{2} \alpha  = 1 \\  ( \csc( \alpha )  +  \cot( \alpha ) )( \csc( \alpha )  -  \cot( \alpha ) ) = 1

Putting the value of cosec alpha +cot alpha we get-

   \frac{5}{2} ( \csc( \alpha )  -  \cot( \alpha ) ) = 1  \\  ( \csc( \alpha )  -  \cot( \alpha ) ) =  \frac{2}{5}

Now putting the value of csc\alpha in terms of cot\alpha we get-

 \frac{5}{2}  -  \cot( \alpha )  -  \cot( \alpha )  =  \frac{2}{5}  \\  - 2 \cot( \alpha )  =  \frac{2}{5}  -  \frac{5}{2}  \\  - 2 \cot( \alpha )  =  \frac{ - 21}{10}  \\  \cot( \alpha )  =  \frac{21}{20}

Now we know that cot\alpha is an inverse of tan\alpha

Thus the value of tan\alpha will be 20/21.

Similar questions