Math, asked by sukhadawani4001, 1 year ago

If cosec theta + cot theta = k prove that cos theta = k2-1 / k2 + 1

Answers

Answered by mysticd
228

Answer:

If \:cosec\theta+cot\theta=k\\then\:cos\theta =\frac{k^{2}-1}{k^{2}+1}

Step-by-step explanation:

cosec\theta+cot\theta=k\:--(1)

We \: know \: the \\ Trigonometric\:identity:\\cosec^{2}\theta-cot^{2}\theta =1\:---(1)

(cosec\theta+cot\theta)(cosec\theta-cot\theta)=1

\implies k(cosec\theta-cot\theta)=1

\implies cosec\theta-cot\theta=\frac{1}{k}\:--(2)

/* Subtract equation (2) from equation (1) , we get

 2cot\theta = k-\frac{1}{k}

\implies \frac{2cos\theta}{sin\theta}=\frac{k^{2}-1}{k}\:--(3)

/* Add equations (1) and (2), we get

2cosec\theta = k+\frac{1}{k}

\implies \frac{1}{sin\theta}=\frac{k^{2}+1}{k}\:---(4)

 Now,\\Find (3)÷(4),we get

\frac{\frac{2cos\theta}{sin\theta}}{\frac{1}{sin\theta}}=\frac{\frac{k^{2}-1}{k}}{\frac{k^{2}+1}{k}}

\implies cos\theta =\frac{k^{2}-1}{k^{2}+1}

Hence, proved.

•••♪

Answered by sandy1816
1

Answer:

given

 \cosec \theta +  \cot \theta = k

Now RHS

 \frac{ {k}^{2}  - 1}{ {k}^{2}  + 1}  \\  \\  =  \frac{( {cosec \theta +  \cot \theta})^{2}  - 1}{( {cosec \theta + cot \theta})^{2}  + 1}  \\  \\  =  \frac{2 {cot}^{2}  \theta + 2cosec \theta cot \theta}{2 {cosec}^{2} \theta + 2cosec \theta cot \theta }

 =  \frac{2cot \theta(cot \theta + cosec \theta)}{2coec \theta(cosec \theta + cot \theta)}  \\  \\  =  \frac{cot \theta}{cosec \theta}  \\  \\  = cos \theta

Similar questions