Math, asked by vishakhapanchooss26y, 1 year ago

if cosec theta + cot theta =k then find the value of sec theta in terms of k

Answers

Answered by A1peakenbe
9

Solution  

               To    find  

               sec\theta    in   terms   of   k

               Given ,

               cosec  \theta -  cot \theta  =  k  ------------->  Equation 1

              As  we   know  that  

              cosec^{2}  \theta -  cot^{2}  \theta  =  1

               Using  

              a^{2}  -  b^{2}   = (a-b)(a+b)

              We  have

              cosec^{2}  \theta -  cot^{2}  \theta  =  (cosec\theta-  cot\theta ) (cosec\theta+cot\theta)

             (cosec\theta-  cot\theta ) (cosec\theta+cot\theta)  = 1  

            (cosec\theta+  cot\theta )  = \dfrac{1}{(cosec\theta-cot\theta )}

            (cosec\theta+  cot\theta )  = \dfrac{1}{k}   ----------->  Equation 2

            On   Adding   Equation  1   and   Equation  2   we   get

            cosec \theta =\dfrac{1}{2}  [ k + \dfrac{1}{k}]

             sin  \theta =   \dfrac{2k}{(k^{2} +1)}

             As   we   know  that  

            sin^{2}\theta  + cos^{2}\theta  = 1

            cos^{2} \theta  =  1  - sin^{2} \theta

            cos\theta =  1  - [\dfrac{2k}{(k^{2} +1)^{2} } ]^{2}

            cos\theta =   \dfrac{k^{2}   -1}{k^{2} +1}

            As   we    know   that  

            sec\theta  =   \dfrac{1}{cos\theta}

            Hence  ,  

           sec\theta =   \dfrac{k^{2}   +1}{k^{2} -1}

         

                     

       

Answered by cheruvuVaishnavi007
1

Step-by-step explanation:

HERE IS U R ANSWER

PLS MARK ME AS BRAINLIST

Attachments:
Similar questions