Math, asked by sravani2536, 3 months ago

if cosec theta +cot theta =k,then prove that cos theta=k2-1/k2+1​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \cosec( \theta)  +  \cot(\theta) = k

 \implies \frac{1 +  \cos(\theta) }{ \sin(\theta) }  = k \\

\implies\frac{2 \cos^{2} ( \frac{\theta }{2} ) }{2 \sin( \frac{\theta}{2} ) \cos( \frac{\theta}{2} )  }  = k \\

\implies  \cot( \frac{\theta}{2} ) = k

\implies \tan( \frac{\theta}{2} ) =  \frac{1}{k}   \\

Now,

 \cos(\theta)  =  \frac{1 -  \tan ^{2} ( \frac{\theta}{2} ) }{1 +  \tan^{2} ( \frac{\theta}{2} ) }  \\

 \cos(\theta)  =  \frac{1 -  \frac{1}{ {k}^{2} } }{1 +  \frac{1}{ {k}^{2} } }  \\

 \cos(\theta)  =  \frac{ {k}^{2} - 1 }{ {k}^{2} + 1 }  \\

Similar questions