Math, asked by rizwana665566, 1 year ago

If cosec theta +cot theta=k then write all trigonometric ratios at theta in terms of k.

Answers

Answered by Dishant16
69
Hope it helps.
Thankyou
Attachments:
Answered by hukam0685
9

The value of other trigonometric ratios in terms of k are

\bf \red{sin \:  \theta =  \frac{2k}{1 +  {k}^{2} }}  \\

\bf \green{{cosec}  \: \theta =  \frac{1 +  {k}^{2} }{2 k} }  \\

 \bf \red{cos\:  \theta = \frac{1 -  {k}^{2} }{1 +  {k}^{2} }  }\\

 \bf \green{sec\:  \theta =  \frac{1 +  {k}^{2} }{1 -  {k}^{2} } } \\

 \bf \red{tan \: \theta =  \frac{2k}{1  -  {k}^{2} }  }\\

 \bf \green{cot \: \theta =  \frac{1 -  {k}^{2} }{2k} } \\

Given:

  •  cosec( \theta)  +  \cot(\theta)  = k ...eq1\\

To find:

  • Write all trigonometric ratios at theta in terms of k.

Solution:

Trigonometric / algebraic identity to be used:

 {cosec}^{2}  \theta -  {cot}^{2} \theta = 1 \\

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)\\

 (a+b)^2={a}^{2} +2ab+{b}^{2}\\

 (a-b)^2={a}^{2} -2ab+{b}^{2}\\

Step 1:

Apply algebraic identity on trigonometric identity.

{cosec}^{2}  \theta -  {cot}^{2} \theta = 1 \\

or

({cosec} \: \theta -  {cot} \:  \theta)({cosec} \: \theta  +   {cot }\: \theta) = 1 \\

put the value from given terms.

({cosec} \:\theta -  {cot}\: \theta)k = 1 \\

or

({cosec} \:\theta -  {cot}\:\theta)=  \frac{1}{k}  ...eq2\\

Step 2:

Add both equations.

{cosec}\:\theta -  {cot}\:\theta=  \frac{1}{k}  \\ {cosec}\:\theta  +  {cot}\:\theta = k \\  -  -  -  -  -  -  -  -  -  \\ 2 \: {cosec}\:\theta =  \frac{1}{k}  + k \\  -  -  -  -  -  -  -  -  -  \\

or

\bf \green{{cosec} \: \theta =  \frac{1 +  {k}^{2} }{2 k} }  \\

We know that

\bf sin \: \theta =  \frac{1}{cosec \:  \theta}  \\

so,

 \bf \red{sin \:  \theta =  \frac{2k}{1 +  {k}^{2} }}  \\

Step 3:

As,

\bf cos\:  \theta =  \sqrt{1 -  {sin}^{2}  \theta}  \\

so,

cos\:  \theta =  \sqrt{1 -  { \left( \frac{2k}{1 +  {k}^{2} }  \right)}^{2}  }  \\

or

cos\:  \theta =  \sqrt{1 -  { \left( \frac{4 {k}^{2} }{1 +2 {k}^{2}  +   {k}^{4} }  \right)} }  \\

or

cos\:  \theta =  \sqrt{ { \frac{1 +2 {k}^{2}  +   {k}^{4} - 4 {k}^{2} }{1 +2 {k}^{2}  +   {k}^{4} } } }  \\

or

cos\:  \theta =  \sqrt{ { \frac{1  - 2 {k}^{2}  +   {k}^{4} }{1 +2 {k}^{2}  +   {k}^{4} } } }  \\

or

cos\:  \theta =  \sqrt{ { \left( \frac{1 -  {k}^{2} }{1 +  {k}^{2} }  \right)}^{2}  }  \\

or

 \bf \red{cos\:  \theta = \frac{1 -  {k}^{2} }{1 +  {k}^{2} }  }\\

As,

\bf cos\:  \theta =   \frac{1}{sec\:  \theta}  \\

Thus,

 \bf \green{sec\:  \theta =  \frac{1 +  {k}^{2} }{1 -  {k}^{2} } } \\

Step 4:

As,

 \bf tan \: \theta  = \frac{sin\:  \theta}{cos\:  \theta}  \\

so,

tan \: \theta =  \frac{2k}{1 +  {k}^{2} }  \times  \frac{1 +  {k}^{2} }{1 -  {k}^{2} }  \\

or

 \bf \pink{tan \: \theta =  \frac{2k}{1  -  {k}^{2} }  }\\

As,

\bf cot \: \theta =  \frac{1}{tan \: \theta}  \\

so,

 \bf \pink{cot \: \theta =  \frac{1 -  {k}^{2} }{2k} } \\

Thus,

All the trigonometric ratios have calculated in terms of k.

_____________________________

Learn more:

1) If sin x =3/5 and cos y =12/13, evaluate:

i)sec2 x

ii)tan x + tan y

https://brainly.in/question/4617646

2) Calculate all trigonometric ratios for angle 30 degree and 60 degree geometrically

https://brainly.in/question/2566741

Similar questions