Math, asked by tuhnn, 7 months ago

if cosec theta+cot theta=m then prove that (m square +1) cos theta=m square-1​

Answers

Answered by TheMoonlìghtPhoenix
11

Step-by-step explanation:

Answer:-

\huge{\rm{\pink{\underline{Given:-}}}}

\sf{Cosec \theta + Cot \theta = m}

\huge{\rm{\pink{\underline{To \ prove:-}}}}

\sf{(m^2+1)Cos \theta = m^2 -1}

Concept:-

Trigonometry and its applications.

Let's Do!

\sf{(m^2+1)Cos \theta = m^2 -1}

\sf{Cos \theta = \dfrac{m^2 -1}{(m^2+1)}} (1)

\sf{Cosec \theta + Cot \theta = m}

\sf{\dfrac{1}{sin \theta} + \dfrac{cos \theta }{sin \theta} = m}

\sf{\dfrac{1 + cos \theta}{sin \theta} = m} (2)

Placing value of (2) in (1),

Numerator:-

\sf{(\dfrac{1+ cos \theta}{sin \theta})^2 - 1 }

\sf{\dfrac{(1+ cos \theta)^2}{sin^2 \theta} - 1 }

\sf{\dfrac{(1 + cos^2 \theta+2cos \theta)}{sin^2 \theta} - 1 }

\sf{\dfrac{1 + cos^2 \theta+2cos \theta - sin^2 \theta}{sin^2 \theta}}

\sf{\dfrac{cos^2 \theta + cos^2 \theta+2cos \theta }{sin^2 \theta}}

\sf{\dfrac{2cos^2 \theta +2cos \theta }{sin^2 \theta}}

Denominator:-

\sf{(\dfrac{1+ cos \theta}{sin \theta})^2 + 1 }

\sf{\dfrac{(1+ cos \theta)^2}{sin^2 \theta} + 1 }

\sf{\dfrac{(1 + cos^2 \theta+2cos \theta)}{sin^2 \theta} + 1 }

\sf{\dfrac{1 + cos^2 \theta+2cos \theta + sin^2 \theta}{sin^2 \theta}}

\sf{\dfrac{1 +1+2cos \theta}{sin^2 \theta}}

\sf{\dfrac{2+2cos \theta}{sin^2 \theta}}

Now, combining both:-

\sf{\dfrac{\dfrac{2cos^2 \theta +2cos \theta }{sin^2 \theta}}{\dfrac{2+2cos \theta}{sin^2 \theta}}}

Now, sin² theta gets cancelled.

\sf{\dfrac{2 cos^2 \theta + 2 cos \theta }{2+2 cos \theta}}

\sf{\dfrac{2 cos \theta(  cos \theta +1)}{2(1+ cos \theta)}}

2 gets cancelled, 1 + cos theta cancelled, so left is cos theta.

Hence Proved!

Answered by anshu24497
1

\huge\sf\underline{\pink{Answer:-}}

\large\sf{\orange{Given:-}}

\sf{\green{Cosec \theta + Cot \theta = m}}

\large\sf{\color{navy}{To \ prove:-}}

\sf{\green{(m^2+1)Cos \theta = m^2 -1}}

\large\sf{\purple{Concept:-}}

Trigonometry and its applications.

\large\sf{\color{gold}{Let's ~Do!}}

\sf{(m^2+1)Cos \theta = m^2 -1} \\  \\ </p><p>\sf{Cos \theta = \dfrac{m^2 -1}{(m^2+1)}} \\  \\ </p><p>\sf{Cosec \theta + Cot \theta = m} \\  \\ </p><p>\sf{\dfrac{1}{sin \theta} + \dfrac{cos \theta }{sin \theta} = m} \\  \\ </p><p>\sf{\dfrac{1 + cos \theta}{sin \theta} = m}

Placing value of (2) in (1),

 \large \sf{ \underline{ \underline{ \red{Numerator:-}}}}

\sf{(\dfrac{1+ cos \theta}{sin \theta})^2 - 1 } \\  \\ </p><p>\sf{\dfrac{(1+ cos \theta)^2}{sin^2 \theta} - 1 } \\  \\ </p><p>\sf{\dfrac{(1 + cos^2 \theta+2cos \theta)}{sin^2 \theta} - 1 } \\  \\ \sf{\dfrac{1 + cos^2 \theta+2cos \theta - sin^2 \theta}{sin^2 \theta}} \\  \\ \sf{\dfrac{cos^2 \theta + cos^2 \theta+2cos \theta }{sin^2 \theta}} \\  \\ \sf{\dfrac{2cos^2 \theta +2cos \theta }{sin^2 \theta}}

 \large \sf{ \underline{ \underline{ \red{Denominator:-}}}}

\sf{(\dfrac{1+ cos \theta}{sin \theta})^2 + 1 } \\  \\ </p><p>\sf{\dfrac{(1+ cos \theta)^2}{sin^2 \theta} + 1 } \\  \\ \sf{\dfrac{(1 + cos^2 \theta+2cos \theta)}{sin^2 \theta} + 1 } \\  \\ </p><p>\sf{\dfrac{1 + cos^2 \theta+2cos \theta + sin^2 \theta}{sin^2 \theta}} \\  \\ </p><p>\sf{\dfrac{1 +1+2cos \theta}{sin^2 \theta}} \\  \\ </p><p>\sf{\dfrac{2+2cos \theta}{sin^2 \theta}}

 \large \sf{ \underline{ \color{midnightblue}{Now, combining  \: both:-}}}

\sf{\dfrac{\dfrac{2cos^2 \theta +2cos \theta }{sin^2 \theta}}{\dfrac{2+2cos \theta}{sin^2 \theta}}}

 \sf{ \color{purple}{Now, \:  sin² \:  theta \:  gets  \: cancelled.}}

\sf{\dfrac{2 cos^2 \theta + 2 cos \theta }{2+2 cos \theta}} \\  \\ </p><p>\sf{\dfrac{2 cos \theta( cos \theta +1)}{2(1+ cos \theta)}}

2 gets cancelled, 1 + cos theta cancelled, so left is cos theta.

Similar questions