If cosec theta + cot theta =m then show (m^2+1) sin theta =2m
Answers
Answered by
4
Hi...☺
Here is your answer...✌
Given that,
m = cosecθ + cotθ
m² + 1 = (cosecθ+cotθ)² + (cosec²θ-cot²θ)
= (cosecθ+cotθ)²+(cosecθ+cotθ)(cosecθ-cotθ)
= cosecθ+cotθ (cosecθ+cotθ+cosecθ-cotθ)
= cosecθ+cotθ ( 2cosecθ )
= m × 2cosecθ
=> m² + 1 = 2m cosecθ -----(1)
Now,
To Prove : (m² + 1) sinθ =2m
Proof :
LHS
= (m² + 1) sinθ
= 2m cosecθ × sinθ __ [ from (1) ]
= 2m __ [ since, cosecθ × sinθ = 1 ]
= RHS ___ [ Proved ]
Here is your answer...✌
Given that,
m = cosecθ + cotθ
m² + 1 = (cosecθ+cotθ)² + (cosec²θ-cot²θ)
= (cosecθ+cotθ)²+(cosecθ+cotθ)(cosecθ-cotθ)
= cosecθ+cotθ (cosecθ+cotθ+cosecθ-cotθ)
= cosecθ+cotθ ( 2cosecθ )
= m × 2cosecθ
=> m² + 1 = 2m cosecθ -----(1)
Now,
To Prove : (m² + 1) sinθ =2m
Proof :
LHS
= (m² + 1) sinθ
= 2m cosecθ × sinθ __ [ from (1) ]
= 2m __ [ since, cosecθ × sinθ = 1 ]
= RHS ___ [ Proved ]
Similar questions