Math, asked by harikatangudu2706, 4 months ago

if cosec theta+cot theta=p show that p^2+1/p^-1=sec theta

Answers

Answered by mathdude500
5

\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{cosec\theta + cot\theta = p}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: prove - \begin{cases} &\sf{\dfrac{ {p}^{2}  + 1}{ {p}^{2} - 1}  = sec\theta}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf \:  {cosec}^{2} \theta -  {cot}^{2} \theta = 1}

 \boxed{ \sf \: cot\theta = \bigg( \dfrac{cos\theta}{sin\theta} \bigg)}

 \boxed{ \sf \: cosec\theta = \bigg( \dfrac{1}{sin\theta} \bigg)}

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\dfrac{ {p}^{2}  + 1}{ {p}^{2} - 1 }

On substituting the value of p, we get

 \sf \:  =  \: \dfrac{ {(cosec\theta + cot\theta)}^{2} + 1 }{ {(cosec\theta + cot\theta)}^{2}  - 1}

 \sf \:  =  \: \dfrac{ {cosec}^{2}\theta +  {cot}^{2}\theta + 2cot\theta \: cosec\theta + ( {cosec}^{2}\theta -  {cot}^{2}\theta)}{{cosec}^{2}\theta +  {cot}^{2}\theta + 2cot\theta \: cosec\theta  -  ( {cosec}^{2}\theta -  {cot}^{2}\theta)}

 \sf \:  =  \: \dfrac{{cosec}^{2}\theta +   \cancel{{cot}^{2}\theta} + 2cot\theta \: cosec\theta + {cosec}^{2}\theta -   \cancel{{cot}^{2}\theta}}{ \cancel{{cosec}^{2}\theta} +  {cot}^{2}\theta + 2cot\theta \: cosec\theta  -   \cancel{{cosec}^{2}\theta}  +   {cot}^{2}\theta}

 \sf \:  =  \: \dfrac{2 {cosec}^{2}\theta + 2cosec\theta \: cot\theta }{2 {cosec}^{2}\theta - 2cot\theta \: cosec\theta }

 \sf \:  =  \: \dfrac{ \cancel2 \: cosec\theta \:  \cancel{(cosec\theta + cot\theta)}}{ \cancel2cot\theta \: \cancel{ (cosec\theta + cot\theta)}}

 \sf \:  =  \: \dfrac{cosec\theta}{cot\theta}

 \sf \:  =  \: \dfrac{1}{ \cancel{sin\theta} } \times \dfrac{ \cancel{sin\theta}}{cos\theta}

 \sf \:  =  \: \dfrac{1}{cos\theta}

 \sf \:  =  \: sec\theta

{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions