if cosec theta + cot theta = p, then find cos theta = p^2 - 1/ p^2 + 1
Answers
Answered by
2
Answer:
Step-by-step explanation:
cosecθ + cotθ = p
1/sinθ + cosθ/sinθ = p
1+cosθ = psinθ
Squaring both the sides
(1+cosθ)² = p² (sin²θ)
(1+cosθ)² = p² (1-(cosθ)²)
(1+cosθ)² = p² (1-(cosθ)) (1+cosθ)
1+cosθ = p² (1-cosθ)
1 + cosθ = p² - p²cosθ
cosθ+p²cosθ = p² - 1
cosθ(p² + 1) = p² - 1
cosθ = (p²- 1)/(p² + 1)
Hence proved.
Similar questions